
REFPERSYS high-level goals and design ideas*

Basile STARYNKEVITCH† Abhishek CHAKRAVARTI‡

Nimesh NEEMA§

refpersys.org

October 2019 - May 2021

Abstract

REFPERSYS is a REFlexive and orthogonally PERsistent SYStem (as a
GPLv3+ licensed free software1) running on Linux; it is a hobby2 but serious
research project for many years, mostly aimed to experiment open science
ideas close to Artificial General Intelligence3 dreams, and we don’t expect use-
ful or interesting results before several years of hard work.

audience : LINUX free software developers4 and computer scientists interested in
an experimental open science approach to reflexive systems, orthogonal persistence,
symbolic artificial intelligence, knowledge engines, etc....

Nota Bene: this report contains many hyperlinks to relevant sources so its PDF
should rather be read on a computer screen, e.g. with evince. Since it describes a
circular design (with many cycles [Hofstadter:1979:GEB]), we recommend to read
it twice (skipping footnotes and references on the first read).

This entire document is licensed under the Creative Commons

Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit

creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative

Commons, PO Box 1866, Mountain View, CA 94042, USA.

*This document has git commit fb17387fbbb7e200, was Lua-LATEX generated
on 2021-May-17 18:55 MEST, see gitlab.com/bstarynk/refpersys/ and its
doc/design-ideas subdirectory. Its draft is downloadable, as a PDF file, from
starynkevitch.net/Basile/refpersys-design.pdf . . .

†See starynkevitch.net/Basile/ and contact basile@starynkevitch.net, 92340
Bourg La Reine (near Paris), France.

‡chakravarti.avishek@gmail.com, FL 3C, 62B PGH Shah Road, Kolkata 700032, India.
§nimeshneema@gmail.com, 206 Sundaram Apartment, 38/2, Biyabani, Indore 452002, India.

1Some code is available on gitlab.com/bstarynk/refpersys.
2Basile Starynkevitch (France) wants to find some research grant funding related to this.

Please mention potential funding opportunities (call for research project proposals) by email to
basile@starynkevitch.net.

3Artificial General Intelligence
4Those LINUX software developers are routinely glancing inside, building then using -from their

published source code- quite large open source programs (such as GCC, SBCL, CHICKEN-SCHEME,
HOP, HAXE, OCSIGEN, EMACS, SQLITE, MARIADB, etc...) and perhaps even contributing to smaller
free software projects like NINJA, libonion, etc... By the way, all these open source projects could
be useful to or inspirational for REFPERSYS.

1

http://refpersys.org/
https://en.wikipedia.org/wiki/Hyperlink
https://en.wikipedia.org/wiki/PDF
https://en.wikipedia.org/wiki/Evince
https://en.wikipedia.org/wiki/Cycle_graph
http://creativecommons.org/licenses/by-sa/4.0/
http://gitlab.com/bstarynk/refpersys
https://en.wikipedia.org/wiki/PDF
http://starynkevitch.net/Basile/refpersys-design.pdf
http://starynkevitch.net/Basile/
mailto:basile@starynkevitch.net
mailto:chakravarti.avishek@gmail.com
mailto:nimeshneema@gmail.com
https://gitlab.com/bstarynk/refpersys
http://starynkevitch.net/Basile/
mailto:basile@starynkevitch.net
https://en.wikipedia.org/wiki/Artificial_general_intelligence
http://gcc.gnu.org/
http://sbcl.org/
https://www.call-cc.org/
http://hop.inria.fr/
https://haxe.org/
https://ocsigen.org
https://www.gnu.org/software/emacs/
https://sqlite.org/
https://mariadb.org/
https://ninja-build.org/
https://github.com/davidmoreno/onion

REFPERSYS high-level goals and design ideas

Contents

1 Social Necessity of AGI Systems with Long Term Development 2

2 REFPERSYS ambitions and goals 3
2.1 REFPERSYS core idea[l]?s . 3
2.2 REFPERSYS strange development cycle 7
2.3 REFPERSYS persistent heap . 9
2.4 Agenda and multi-threading in REFPERSYS 12
2.5 Metaprogramming and introspection in REFPERSYS 14

3 The data and object models of REFPERSYS 17
3.1 how data should be processed in REFPERSYS 17
3.2 data at the low and high levels . 18

3.2.1 values and quasi-values . 18
3.2.2 implementation details . 18

3.3 immutable values . 20
3.3.1 immutable scalar values 21
3.3.2 immutable composite values 21

3.4 mutable objects . 22
3.4.1 objects as frame-like data 22
3.4.2 concrete examples of objects 23
3.4.3 object payloads . 25

3.5 File naming . 25
3.6 Building refpersys executable 26
3.7 REFPERSYS workflow . 26
3.8 the REFPERSYS object model . 27

3.8.1 REFPERSYS inheritance graph 28
3.8.2 REFPERSYS message sending 29

4 Persistence in REFPERSYS 30
4.1 The textual data format of REFPERSYS 31
4.2 EBNF Grammar of Data Format 31

5 Metaprogramming in REFPERSYS 32

6 The primordial Read-Eval-Print-Loop of REFPERSYS 33

7 The Web interface of REFPERSYS 34

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 1

https://en.wikipedia.org/wiki/Artificial_general_intelligence

REFPERSYS high-level goals and design ideas

1 Social Necessity of AGI Systems with Long Term Devel-
opment

Our complex, but fragile, world is facing dramatic and extremely challenging planet-
wide issues, such global warming, demographic and political crises, economic and
financial emergencies, and growing inqualities. In the light of such challenges,
Artificial General Intelligence (AGI) systems are increasingly relevant. @@TODO:
explain how?

As the slow, progressive Darwinian evolution of human intelligence shows, the
limited intelligence of the Homo Sapiens 5 species took more than a million years
(about 30,000 generations) to continually evolve from an ape-like state.

Our observation of natural human intelligence (which has not yet been fully un-
derstood or modelled6) has led us to believe that there is no single, simple model of
intelligence. Similarly, any AGI system must necessarily have a very complex and
self-improving organisation.

We are aware than any progress towards AGI will be slow (many years, perhaps
decades7) and progressive. Remember Hofstadter’s Law: “It always takes longer
than you expect, even when you take into account Hofstadter’s Law” [Hofstadter:1979:GEB]
and Brook’s observations [Brooks:1987:NSB, Brooks:1995:MM] that “if one woman
can give birth in 9 months, 9 women cannot give birth to a baby in one month”. For
“giving birth” to REFPERSYS, a small team could need at least 9 years. However,
intermediate results or side effects are not predictable but could be useful even during
the REFPERSYS project.

We believe in free software (read also this), and we strongly believe that an AGI
prototype should be some free software, exactly like most infrastructure software
are (notably LINUX). See also the SOFTWARE HERITAGE project for interesting
insights. REFPERSYS wants to be an AGI infrastructure , and there is work for many
years (several years of work needed without any “artificial intelligence”, just for the
infrastructure).

An even partially successful AGI system might be useful to coordinate, run and
manage other existing software (described through some knowledge given declara-

5In Latin, Homo Sapiens means “the human who knows what it knows” and, interestingly enough,
relates to both metaknowledge and Reflection.

6Half a billion euros of European taxpayers’ money were spent on the Human Brain Project, but
did not lead to a complete, reproducible, artificial model of human intelligence; of course, it did fund
interesting and successful research!

7An interesting parallel could be controlled nuclear fusion -which also bears some “bootstrrapping”
concepts- with ITER; we expect REFPERSYS to cost several thousand times less at least; but even
partial AGI success is as important for humanity as nuclear fusion produced electricity, and a future
REFPERSYS might even help that ITER megaproject or other ones.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 2

https://en.wikipedia.org/wiki/Artificial_general_intelligence
https://en.wikipedia.org/wiki/Homo_sapiens
https://en.wikipedia.org/wiki/Hofstadter's_law
https://www.fsf.org/about/what-is-free-software
https://www.softwareheritage.org/
https://www.humanbrainproject.eu
https://en.wikipedia.org/wiki/ITER
https://en.wikipedia.org/wiki/Megaproject

REFPERSYS high-level goals and design ideas

tively). Imagine how complex future digital twins of the entire planet Earth, designed
to tackle with global warming, would need to be. For such dramatically complex us-
age, an AGI system (like REFPERSYS, if we succeed in making it) could be quite
helpful to just drive and use such a “digital twin” simulation. Making it free soft-
ware runnable on a free software operating system should benefit most of humanity
(but keeping it proprietary won’t), and enable further or alternative experimentations.
And “there is no planet B”8. So investing a few persons willing to working for nearly
a decade is not too much for such a perspective.

2 REFPERSYS ambitions and goals

2.1 REFPERSYS core idea[l]?s

The title of this subsection is not a typo9. We indeed mean both ideas (that is, soft-
ware design and architectural concepts, guiding our daily implementation efforts) and
ideals (that is, long term research objectives and ambitions).

The REFPERSYS10 system shares several -but not all- goals and design ideas
(but no code) with bismon [Starynkevitch:2019:bismon-draft] but of course
not bismon’s application11 to static source code analysis. Like bismon, REF-
PERSYS is a reflexive (it uses reflection), introspective and orthogonally per-
sistent system, but not for static program analysis. Please read Bismon’s draft
report [Starynkevitch:2019:bismon-draft] for a more precise definition of these
concepts. REFPERSYS is a long term12 risky research project with an open
science mindset and reproducible experiment ethics [zuboff:2015:big-other,
oneil:2016:weapons], and a free software licensed under GPLv3+, and targetted
only for LINUX X86-64 computers.. A Linux system13 with at least 16 Gibytes
of RAM, 4 x86-64 cores, and 220 Gibytes of disk is required. The grand am-
bition of REFPERSYS is to become later an infrastructure for some strong AGI

8As reminded E.Macron, president of France, to the US Congress.
9It is a geeky pun on words with shell globbing and regexpr like syntax.

10For a Reflexive Persistent System
11I Basile am not allowed and not funded to directly work on AGI -which still is my major personal

scientific interest- but I do get funded on applied research projects like DECODER and try to push some
AGI ideas into them.

12I don’t expect any significant AGI research results before ≈ 2026.
13My own ours.starynkevitch.net computer, running Debian/Unstable, has 64 Gibytes of

RAM, 24 cores (AMD 2970WX) and terabytes of disk space, including a terabyte of SSD.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 3

https://en.wikipedia.org/wiki/Digital_twin
https://theresnoplanetb.net/
http://github.com/bstarynk/bismon
https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Reflection_(computer_programming)
https://en.wikipedia.org/wiki/Virtual_machine_introspection
https://en.wikipedia.org/wiki/Persistence_(computer_science)
https://en.wikipedia.org/wiki/Persistence_(computer_science)
https://en.wikipedia.org/wiki/Static_program_analysis
https://en.wikipedia.org/wiki/Research
https://en.wikipedia.org/wiki/Open_science
https://en.wikipedia.org/wiki/Open_science
https://ropensci.github.io/reproducibility-guide/sections/introduction/
https://www.gnu.org/philosophy/free-sw.en.html
https://www.gnu.org/licenses/gpl-3.0.html
https://en.wikipedia.org/wiki/Artificial_general_intelligence
https://www.bbc.com/news/av/world-us-canada-43900009/macron-to-us-congress-there-is-no-planet-b
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Glob_(programming)
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Artificial_general_intelligence
https://www.decoder-project.eu/

REFPERSYS high-level goals and design ideas

system à la CAIA14 by Jacques Pitrat15 [Pitrat:1996:FGCS, Pitrat:2009:AST,
Pitrat:2009:ArtifBeings], but before even approaching that goal a big lot of work
is required, and REFPERSYS should be valuable by itself for other less ambitious
and more pragmatical purposes, perhaps some specialized collaborative web server
(GPLv3+) to ease communication between human REFPERSYS developers, that is a
mix of a wiki, a chat, and a tool for sharing document with drawings or graphics.

The development of REFPERSYS is (like the one of bismon, or of CAIA)
a slow, incremental and gradual bootstrapping process with a meta-programming
[dormoy:1992:meta, hernandez-phillips:2019:debugging-bootstrap] approach :
features added to REFPERSYS in January 2020 are used to implement new features
worked on a later REFPERSYS in March 2020.

As every practical software, REFPERSYS targets some defined machines: com-
mon Linux distribution running on some computer16. So the target machine of REF-
PERSYS is a quite complete and modern Linux system (such as a recent DEBIAN

or UBUNTU desktop), with many useful packages, and administered by some human
person17. The REFPERSYS system is published in “source” form, as a set of git ver-
sioned18 textual files (e.g. hopefully generated C files19, perhaps some Makefile
or better yet an OMAKE build -most and more and more20 of them being generated-
or shell files or data files). Some of these files are generated, and the bootstrapping
goal is to have every git-registered textual file been generated by REFPERSYS, with

14With explicit permission from J.Pitrat, CAIA source code -entirely generated by itself,
about half a million lines of C code- is available on my (Basile’s) web page as caia-su-
24feb2016.tar.bz2, and you could build it with gcc -O -g [A-Z]*.c -rdynamic -
ldl then run ./a.out. However, since I Basile sadly failed to convince J.Pitrat that open source
[Lerner-Tirole:2000:economics-open-source, Weber:2004:SuccessOpenSource] software are -in
our XXIth century- also an important way to transmit research ideas, there are no complete instruc-
tions to use it. Hence CAIA has an undocumented user interface as user-friendly as the one of ed but
convenient enough to J.Pitrat alone! If you are capable of reading some comments in French and guess-
ing the semantics of declarative “expert system” like rules (CAIA has more than a dozen of thousands
of them), run it, then type L EDITE and start reverse-engineering that brillant CAIA system.

15Jacques Pitrat has passed away on October 14th, 2019. See quickly also his old
web page on jacques.pitrat.pagesperso-orange.fr and his interesting blog on
bootstrappingartificialintelligence.fr/WordPress3 . . .

16For several years, that computer is a desktop or powerful laptop running some DEBIAN. Later that
could be some “virtual machine” e.g. some DOCKER container.

17For obvious cybersecurity reasons, automatic administration of that Linux distribution is out of
scope. Also, since Basile Starynkevitch is still working (in October 2019) in a cybersecurity lab (of
about 25 permanent staff) at CEA/LIST, cybersecurity concerns would be a conflict of interest.

18We crucially depend upon git specifically (e.g. GitLab), and porting REFPERSYS to some other
versioning system -or to some other operating system than LINUX- would be a quite difficult task.

19However, notice that bootstrapped language implementations like Scheme 48 or OCaml are keeping
some bytecode form under version control, and CHICKEN SCHEME is, like bismon, git-keeping
generated C files.

20Of course, in a chicken and egg fashion, the initial version of REFPERSYS has to contain mostly
hand-written files!

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 4

http://bootstrappingartificialintelligence.fr/WordPress3/?s=CAIA
https://en.wikipedia.org/wiki/Bootstrapping
http://git-scm.com/
https://en.wikipedia.org/wiki/Makefile
http://projects.camlcity.org/projects/omake.html
http://starynkevitch.net/Basile/
http://starynkevitch.net/Basile/caia-su-24feb2016.tar.bz2
http://starynkevitch.net/Basile/caia-su-24feb2016.tar.bz2
https://www.gnu.org/software/ed/
http://jacques.pitrat.pagesperso-orange.fr/
http://bootstrappingartificialintelligence.fr/WordPress3/
https://www.docker.com/
http://www-list.cea.fr/en/technological-research/research-programmes/embedded-systems/validation-and-verification
http://www-list.cea.fr/
http://gitlab.org/
https://en.wikipedia.org/wiki/Porting
http://pages.cs.wisc.edu/~remzi/OSTEP/
http://s48.org/
https://ocaml.org/
https://en.wikipedia.org/wiki/Bytecode
https://www.call-cc.org/
https://en.wikipedia.org/wiki/Chicken_or_the_egg

REFPERSYS high-level goals and design ideas

a bootstraped approach21 similar to those of self-hosting compilers.

Within REFPERSYS, we call22 “source file” any Linux file which is git-
versioned. We hope that more and more of these source files will be generated by
the refpersys ELF executable program. A significant milestone is the entire
bootstrapping of REFPERSYS, when all files (in textual form, to stay git-friendly,
like text based protocols are more friendly for developers) can be regenerated by the
refpersys executable, exactly in the same state as they were previously23 : as a
whole, our REFPERSYS system should become a Quine program, and CAIA is al-
ready one. So the build automation tool which compiles REFPERSYS should use
file contents, not modification times to trigger compilation commands, since a full
regeneration of such a bootstrapped REFPERSYS system will touch all files, with-
out changing the content of any of them. Hence and very concretely, for building
REFPERSYS the OMake build automation tool is preferable to GNU make.

For pragmatical reasons, REFPERSYS needs a good garbage collector (or GC
[appel:1991:garbage, wilson:1992:uniprocessorgc, baker:1995:cons, jones:2016:gchandbook]),
since fully compile-time GC [mazur:2004:compile] are too difficult to implement.
Since multi-core x86-64 machines are very common, it should take advantage of
them, so REFPERSYS should follow a multi-threaded approach above POSIX

[barney:2010:pthreads] or C++11 threads. Our GC should be a precise garbage
collector [Rafkind:2009:PreciseGC] and we may want to favor, like what was
done in GCC MELT [Starynkevitch:2007:Multistage, Starynkevitch-DSL2011,
Starynkevitch-GCCMELTweb], fast allocation of small memory zones which get
quickly disposed of when becoming dead using a copying generational Cheney-like
GC algorithm [wilson:1992:uniprocessorgc]. But mixing precise, sometimes gen-
erational GC techniques with multi-threading is a difficult programming task. But
precise-GC friendly programming is simpler in generated C or C++ code that with
hand-written code (because of explicit management of local GC roots and write bar-

21Observe that Linux source distributions like linuxfromscratch.org, or to a lesser extent
GenToo, are also, when considered as a single system, fully bootstrapped.

22Notice that, on purpose, our terminology is different of usual habits in the open source realm: al-
most all software projects (see also softwareheritage.org) are made of computer files typed by
human developers in some source-code editor or some IDE such as Emacs, vim or Code::Blocks,
according to the old Unix philosophy. Notice that large open source projects like the LIBREOFFICE

suite, the GCC compiler collection or the FireFox browser tend to accept plugins instead of favoring old
fashioned command pipelines, but multi-threaded applications may follow the pipeline design pattern.
In contrast, we are impatient to reach the state where all REFPERSYS source files have been git-
versioned but are all generated by a previous run of our refpersys executable. The REFPERSYS

developer is interacting, through a web interface, with some running refpersys process, which is
also some specialized web server (using HTTP).

23Pedantically, some fixpoint of some very coarse-grained operational semantics related to abstract
interpretation and big step semantics, each big step being the entire regeneration of the system, inspired
by Futurama projections and partial evaluation.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 5

https://en.wikipedia.org/wiki/Bootstrapping_(compilers)
https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Text-based_protocol
https://en.wikipedia.org/wiki/Quine_(computing)
https://en.wikipedia.org/wiki/Build_automation
http://projects.camlcity.org/projects/omake.html
https://www.gnu.org/software/make/
https://en.wikipedia.org/wiki/Tracing_garbage_collection
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.cppreference.com/w/cpp/thread
https://en.wikipedia.org/wiki/Tracing_garbage_collection#Precise_vs._conservative_and_internal_pointers
https://en.wikipedia.org/wiki/Cheney's_algorithm
https://en.wikipedia.org/wiki/Cheney's_algorithm
http://www.linuxfromscratch.org/
https://www.gentoo.org/
http://softwareheritage.org
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Source-code_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://www.gnu.org/software/emacs/
http://vim.org/
http://codeblocks.org/
https://en.wikipedia.org/wiki/Unix_philosophy
https://www.libreoffice.org/
http://gcc.gnu.org
https://www.mozilla.org/en-US/firefox/
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://en.wikipedia.org/wiki/Pipeline_(software)
https://en.wikipedia.org/wiki/Fixed_point_(mathematics)
https://en.wikipedia.org/wiki/Operational_semantics
https://en.wikipedia.org/wiki/Abstract_interpretation
https://en.wikipedia.org/wiki/Abstract_interpretation
https://en.wikipedia.org/wiki/Operational_semantics#Structural_operational_semantics
https://en.wikipedia.org/wiki/Partial_evaluation

REFPERSYS high-level goals and design ideas

riers, à la QISH or OCAML: garbage collection invariants are boring and brittle to
maintain in hand-written code).

Reification is an important concept in REFPERSYS, including (later) at the
knowledge representation level with semantic networks and frames. REFPERSYS

call stacks are made of call frames known to our garbage collector (like OCAML’s
ones). They could later be copied into data structures representing some delimited
continuations [Reynolds:1993:continuations, Queinnec:2004:ContinWeb], per-
haps even representing and describing control [fouet-starynkevitch:describing-control:1987,
Starynkevitch-1990-EUM, Pitrat:2009:ArtifBeings]. This should also enable in-
trospection, by permitting primitives inspecting the current call stack, perhaps using
Ian Taylor’s libbacktrace. Also, such an introspection might perhaps be im-
plemented [mitchell:2001:alp] with two nearly twin refpersys processes, one of
them driving a gdb process24.

REFPERSYS should (like CAIA and its predecessor MALICE did [Pitrat:2009:AST,
Pitrat:1996:FGCS, Pitrat:2009:ArtifBeings]) have some expert system shell [kumar:2015:importance-expert-systems,
nigro:2008:meta] and meta-rules to “dynamically compile” some subset of expert
system rules and knowledge bases to procedural code (e.g. with a metaprogramming
approach of generating C code, or libgccjit compiled code, then dlopen(3)-
ing that code and running it at runtime. The manydl.c program show that this can
practically be done many dozen of thousands of times on Linux desktops).

REFPERSYS will extensively use metaprogramming techniques, so it should
generate code (like CAIA do) in a transpiler approach (in C, C++, -compiled into
plugins and later dynamically loaded with dlopen(3)- maybe also JavaScript and
HTML5 if we decide to have a web user interface). REFPERSYS could also later
use just-in-time compilation libraries such as libgccjit. The domain-specific
language of REFPERSYS25 (a declarative one, with “expert system rules”) should
gradually increase its expressiveness and become more and more declarative and
closer to mathematical formalisms.

Most Linux distributions contain lots of useful libraries or software components
for REFPERSYS long-term goals, notably machine learning open source libraries like
TENSORFLOW [charniak:2019:deep-learning] or GUDHI [chazal:2016:high]. We
might at some point also need messaging libraries like 0MQ, graphical user inter-
faces libraries à la QT or more probably web servicing libraries like libonion or
WT. To decrease efforts, we don’t want to rewrite such libraries inside REFPERSYS

(considered as a very high level, declarative, domain-specific language). Hence, we
24Imagine some popen or some g_spawn_async or some Poco::Process of some gdb

refpersys 1234 process debugging the other one of pid 1234.
25That domain-specific language has to be defined and implemented in a bootstrapped manner.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 6

http://starynkevitch.net/Basile/qishintro.html
https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html
https://en.wikipedia.org/wiki/Reification_(computer_science)
https://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning
https://en.wikipedia.org/wiki/Semantic_network
https://en.wikipedia.org/wiki/Frame_(artificial_intelligence)
https://en.wikipedia.org/wiki/Call_stack
https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html
https://en.wikipedia.org/wiki/Delimited_continuation
https://en.wikipedia.org/wiki/Delimited_continuation
https://github.com/ianlancetaylor/libbacktrace
https://gcc.gnu.org/onlinedocs/jit/
http://man7.org/linux/man-pages/man3/dlopen.3.html
https://github.com/bstarynk/misc-basile/blob/master/manydl.c
https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/Source-to-source_compiler
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Dynamic_loading
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://gcc.gnu.org/onlinedocs/jit/
https://www.tensorflow.org/
https://gudhi.inria.fr/
https://zeromq.org/
http://qt.io/
https://github.com/davidmoreno/onion/
https://www.webtoolkit.eu/wt
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Domain-specific_language
http://man7.org/linux/man-pages/man3/popen.3.html
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-async
https://pocoproject.org/docs/Poco.Process.html

REFPERSYS high-level goals and design ideas

will need in REFPERSYS to generate some glue code, like SWIG does, from some
declarative description (probably some frames or knowledge bases) of the API of
these available libraries.

REFPERSYS should at first be orthogonally persistent. Like BISMON [Starynkevitch:2019:bismon-draft]
it will load its state (its entire garbage-collected heap) from files at startup, and will
dump its state26 into files at shutdown. These state files are textual, in JSON for-
mat, and git-versioned, and should be portable to other 64 bits Linux computers. A
manifest file describing the collection of files keeping the state is probably needed.

2.2 REFPERSYS strange development cycle

Ordinary software projects tend to follow a spiral development model [boehm:1988:spiral]
as shown in figure 1. But REFPERSYS’ development follows a strange loop

1.Determine
objectives

2. Identify and
resolve risks

3. Development
and Test

4. Plan the
next iteration

Progress

Cumulative cost

Requirements
plan

Concept of
operation

Concept of
requirements

Prototype 1 Prototype 2
Operational
prototype

Requirements Draft
Detailed
design

Code

Integration

Test

Implementation

Release

Test plan Verification
& Validation

Development
plan

Verification
& Validation

Review

Figure 1: the traditional spiral development model (from Wikipedia spiral model)

[hofstadter:2007:strange-loop], since it is bootstrapped in an evolutionary proto-
typing manner. It is more like a spiral staircase like in figure 2. The initial (floor)
is just a persistent system, and we gradually add new code implementing more fea-
tures (first entirely hand-written, later more and more parts of it replaced by REF-
PERSYS generated code). Of course the fun is in replacing existing hand-written

26In a manner inspired by SBCL save-lisp-and-die primitive, or POLYML export primitive,
or marshalling facilities of OCAML or PYTHON pickle module.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 7

http://swig.org/
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Persistence_(computer_science)
https://en.wikipedia.org/wiki/Memory_management#HEAP
http://json.org/
https://en.wikipedia.org/wiki/Manifest_file
https://en.wikipedia.org/wiki/Strange_loop
https://en.wikipedia.org/wiki/Spiral_model
https://en.wikipedia.org/wiki/Software_prototyping#Evolutionary_prototyping
https://en.wikipedia.org/wiki/Software_prototyping#Evolutionary_prototyping
http://www.sbcl.org/manual/index.html#Saving-a-Core-Image
https://www.polyml.org/
https://www.polyml.org/documentation/Reference/PolyMLStructure.html#export
https://en.wikipedia.org/wiki/Marshalling_(computer_science)
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html
https://docs.python.org/3/library/pickle.html

REFPERSYS high-level goals and design ideas

code (or low-level DSL) by more expressive and generated one. So we will con-
tinuously rewrite past formalizations as a more clever and expressive ones, tak-
ing more and more advantage of REFPERSYS whole-system introspective abilities.
All of EURISKO [Lenat:1983:Eurisko], CYC [Lenat:1991:ev-cycl] and SELF27

[chambers:1991:efficient] (or even IO or SMALLTALK) systems and their incremen-
tal development process are inspirational.

initial persistent refpersys
feature1version1feature2version2

feature3
version3
feature4

version4
feature5

version5

feature4

feature6

version6

feature7

feature24
version24

ver
sio

n2
3

Each new feature -or small incremental change or a few of them (small
git commits) - of REFPERSYS enables us to build and generate the
next version of REFPERSYS, and a next feature is then added to that
improved version, and so on repeatedly, etc....

Figure 2: the strange REFPERSYS staircase development model (from a figure of

Spiral stairs by Lluisa Iborra from the Noun Project)

The first significant milestone of REFPERSYS should be the ability to re-generate
all its textual source files (and maybe even git add thengit commit them). That
would require first implementing some simple template based machinery28, withe
the ability, like QUINE programs do, to regenerate all REFPERSYS source code (e.g.

27SELF was even able (in hours of CPU time) to redefines its integers -even for arithmetic used inside
its compiler- as bignums.

28Perhaps inspired by simple designs like DJANGO tempates, but driven by frame-based REFPERSYS

objects.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 8

https://en.wikipedia.org/wiki/Eurisko
https://en.wikipedia.org/wiki/Cyc
https://en.wikipedia.org/wiki/Self_(programming_language)
https://iolanguage.org/
https://en.wikipedia.org/wiki/Smalltalk
https://thenounproject.com/term/spiral-stairs/956427/
https://thenounproject.com/term/spiral-stairs/956427/
https://en.wikipedia.org/wiki/Quine_(computing)
https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic
https://docs.djangoproject.com/en/2.2/topics/templates/

REFPERSYS high-level goals and design ideas

in C++, a Makefile, etc...). Actually REFPERSYS needs to conceptually have
self-modifying code [Tschudin:2005:HarnessingSC], practically implemented by
systematically doing most function calls through indirect function pointers (which
gets updated with dlsym(3)).

2.3 REFPERSYS persistent heap

When REFPERSYS is running in some multi-threaded LINUX process, the REFPER-
SYS persistent heap is (like Bismon’s one [Starynkevitch:2019:bismon-draft]) se-
mantically like the memory heap of most dynamic programming languages (such
as PYTHON, GUILE, GO, SBCL, etc . . .). The figure 3 should give an intuition
about that heap, when it is inside the virtual address space of some refpersys
process. We strongly want to avoid any GIL, but multi-threaded precise efficient
garbage collector implementations are quite difficult to code. However, notice that
the persistence (dump as textual git-versioned disk files) of a heap uses algo-
rithms similar to those of copying garbage collectors [wilson:1992:uniprocessorgc,
jones:2016:gchandbook].

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 9

http://man7.org/linux/man-pages/man3/dlsym.3.html
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://python.org/
https://www.gnu.org/software/guile/
https://golang.org/
http://sbcl.org/
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Global_interpreter_lock

REFPERSYS high-level goals and design ideas

global
roots

transient
roots

vt1

vt2

vt3

vt4

vt5

#15

#-17

#123#123

vec 1.0 3.0

working
threads

thread 1

thread 2

cfr1

cfr2

cfr3

lv1
lv2

lv3

lv4

RefPerSys heap

ob1

ob2
iv1

iv2

iv3

tob1

ob3

str1 "abc"

iv4

#123 a tagged 63 bits integer
vg1 a global persisted variable
vt2 a static transient variable
ob1 a mutable persistent object
iv2 an immutable constant composite value
iv4 an immutable but dead constant composite value (should be GC-ed)
tob1 a transient mutable object
str1 a constant UTF-8 string value "abc"
vec a constant vector of floats [1.0; 3.0]
lv2 a local variable inside its call frame
cfr1 a call frame (simplified)
thread1 a working thread and its call stack (simplified)

In real life, the heap may be quite large (gigabytes) and contain hun-
dreds of global roots or transient roots, millions of objects (sometimes
transient, often persistent) and many millions immutable values (some
of them composite and containing values, other scalar and containing
non-pointer data like strings or vectors of float do), and dozen of work-
ing threads, each having thousands of call frames with dozens of local
variables each.

Figure 3: the REFPERSYS persistent heap (simplified)

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 10

REFPERSYS high-level goals and design ideas

That figure 3 shows a few global and transient roots (both being processed by the
garbage collector), and several threads each having its call stack (made of call frames)
with local variables in it. In that figure, if µ and µ′ are two memory zones or locations
(like for an object such as ob1, or for an immutable value iv2), there is an arrow
µ → µ′ if some field φ of µ refers to µ′, that is (in C like notation) if µ->φ = µ′ .
Different arrow colors could mean different fields φ, φ′ . . . etc . . . The heap is actually
a large directed graph and may contain cycles (e.g. ob1 → iv1 → ob3 → ob2 →
ob3). Most values are immutable values (some of them being composite, such as
iv1). Some immutable values are scalar (e.g. strings). Notice that iv4 is a dead
value, unreachable from others; it should be later garbage collected. Only objects
have a content which may change. Since REFPERSYS is multi-threaded, the access
inside every object should be thread-safe and usually is protected by a mutex (or read
write lock) which is part of that object29.

Conceptually, REFPERSYS tracing precise garbage collector should traverse the
graph of references to REFPERSYS values, starting from global or transient roots and
local variables inside call frames of working threads. Each REFPERSYS value (im-
mutable or object) is represented by a machine word (aligned, 64 bits) which usually
contains a pointer, but sometimes some tagged integer. Immutable values are often
“small” (typically, less than a few dozens of words of memory, sometimes a lot more)
but objects are necessarily heavier since they contain some kind of lock. closures are
immutable values, containing an object representing and giving their function code
(as a C function pointer inside that object), and additional closed values. In practice
our garbage collector processes not only values (either immutable values or objects),
but also quasi-values : these are a single memory zone which is allocated using the
garbage collector allocation protocol, traversed by the GC when something points to
it, appears inside other values (in particular, as payload of objects), but by convention
should not be passed as a genuine value. So the figure 3 is a simplification.

Some values (or objects) are dead; in the figure 3, the immutable value iv4 is
not reachable from roots or local variables on the call stack of working threads. So it
is dead and should eventually be reclaimed by the garbage collector.

Values -either immutable values or changeable objects- in REFPERSYS can
be either persistent (dumped in textual state files30, then reloaded at restart of
refpersys process) or transient (that is, not dumped and not appearing in state
files).

29Or by atomic pointers, probably the REFPERSYS class of an object is, inside it, given by some C++
field with an std::atomic pointer type, for efficiency reasons.

30In the current implementation, REFPERSYS state files should appear under persistore/ sub-
directory, and the manifest file is rps_manifest.json at the top directory.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 11

https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Tracing_garbage_collection
https://en.wikipedia.org/wiki/Tagged_pointer
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.cppreference.com/w/cpp/atomic/atomic

REFPERSYS high-level goals and design ideas

The persistence machinery - the dump - is conceptually simple and could run
in several threads: start from global roots and traverse the memory graph but ignore
transient objects and transient roots and memoize previously seen persistent objects.
Of course, objects should not be persisted twice, and are referred by the object id
or objid in the state files produced by the dump. That objid is alphanumeric, ran-
domly generated and so hopefully globally unique -like _2om48kc3k5R02d3ktW for
example- in our current implementation; exactly like UUIDs should be. Notice the
conceptual similarity between REFPERSYS dump algorithm and its tracing garbage
collector: both are traversing the graph of references inside the heap.

The global roots are objects. Use the C++ functions rps_each_root_object
to iterate on them, rps_add_root_object to add one, rps_remove_root_object
to remove one, rps_is_root_object to test if an object is a global root,
rps_set_root_objects to get the set of all of them, andrps_nb_root_objects
to get their number. Of course, some global roots can be transient objects, but all of
them are roots for the garbage collector.

The initial loading machinery (recreating a suitable heap - and rebuilding a graph
of references inspired by figure 3, without any transient stuff) from its previous
dumped state) is first creating empty all objects, then later filling each of them. How-
ever, for efficiency, we may want to load the heap in parallel, using several loader
threads. This could be easy if, after having created all objects as empty, and loaded
plugins (i.e. dlopen-ing many *.so files), REFPERSYS processes each state file
in a potentially different loading thread.

2.4 Agenda and multi-threading in REFPERSYS

Once REFPERSYS persistence is implemented and provides some meta-programming
facilities, we can define and use some agenda machinery. The insight is that REF-
PERSYS is running several [barney:2010:pthreads, butenhof:1997:programming]
worker threads31 known to its garbage collector (which might also need its own
managing and synchronizing thread, which will mostly stay idle.). Our agenda is the
central mechanism of REFPERSYS feeding these worker threads with some work to
do, using tasklets representing a small amount of work to be done.

Each worker thread is indefinitely looping like this:

1. it runs occasionally some housekeeping processing, notably garbage collec-
tion work. This is where garbage collection gets synchronized. Occasionally,

31Concretely, this means pthreads(7), perhaps wrapped as C++11 threads, QT5 threads, GLIB

threads, etc

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 12

https://en.wikipedia.org/wiki/Universally_unique_identifier
http://man7.org/linux/man-pages/man7/pthreads.7.html
https://en.cppreference.com/w/cpp/thread
https://doc.qt.io/qt-5/thread-basics.html
https://developer.gnome.org/glib/stable/glib-Threads.html
https://developer.gnome.org/glib/stable/glib-Threads.html

REFPERSYS high-level goals and design ideas

some new tasklets could be “auto-magically” inserted in the agenda at this
point32, e.g. to run some code when some input data is available on some file
descriptor for a pipe(7) or a tcp(7) socket, or to run some code every
tenth of second, or to handle graceful termination when getting a SIGTERM33

signal(7).

2. it waits, if so needed (probably using PTHREADS condition variables), for the
agenda to become non-empty

3. it chooses a tasklet τ to run inside the agenda. That tasklet is taken, so removed
from the agenda.

4. it runs that tasklet τ for a small amount of time (a few dozen of milliseconds,
typically), called a step34. Of course during that step the agenda can (and
usually will) change, and perhaps the same tasklet τ would be added again into
the agenda, with maybe several other tasklets. Or on the contrary, running τ

could remove one or several other tasklets τ1, τ2 . . . from the agenda, and add
other ones τ ′1, τ

′
2, . . . there.

5. that loop is repeated (unless REFPERSYS is stopped).

The number of worker threads is fixed and small. Typically one worker thread
per processor core (so 3 on a small laptop, 20 or 30 on a big desktop). Of course the
agenda mechanism requires synchronization through locks or mutexes and PTHREAD

condition variables [barney:2010:pthreads].
In addition of the worker thread, some additional slave threads could be needed,

in particular to handle some event loop (and serve HTTP requests). Of course the
running steps should appropriately lock objects, to avoid aftermath and synchronize
properly their mutation.

The concrete organization of the REFPERSYS agenda has to be precisely defined.
It could be, as BISMON has, a small data structure made of several first-in first-out
queues, e.g. a queue of high priority tasklets, another of medium priority tasklets, one
of low priority tasklets, etc..., with the agenda mechanism choosing in the non-empty
queue of highest priority its tasklet staying in front.

32Or such tasklets could be very carefully added into the agenda from non-worker threads organized
in a producer-consumer fashion -such as those started by libonion-, respecting our GC invariants.
This is a delicate issue !

33Read also signal-safety(7) and consider using signalfd(2) or pipe-to-self tricks in-
spired by QT approach to UNIX signal handling. Notice that timerfd_create(2) might also be
useful for tasklets to be added periodically in some event loop around poll(2).

34Calling blocking system calls such as poll(2) or read(2) from a pipe or socket should be
forbidden here, because a step should run quickly, in milliseconds.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 13

https://en.wikipedia.org/wiki/File_descriptor
https://en.wikipedia.org/wiki/File_descriptor
http://man7.org/linux/man-pages/man7/pipe.7.html
http://man7.org/linux/man-pages/man7/tcp.7.html
http://man7.org/linux/man-pages/man7/signal.7.html
http://github.com/bstarynk/bismon
http://man7.org/linux/man-pages/man7/signal-safety.7.html
http://man7.org/linux/man-pages/man2/signalfd.2.html
https://doc.qt.io/qt-5/unix-signals.html
http://man7.org/linux/man-pages/man2/timerfd_create.2.html
https://en.wikipedia.org/wiki/Event_loop
http://man7.org/linux/man-pages/man2/poll.2.html
http://man7.org/linux/man-pages/man2/poll.2.html
http://man7.org/linux/man-pages/man2/read.2.html

REFPERSYS high-level goals and design ideas

2.5 Metaprogramming and introspection in REFPERSYS

Metaprogramming is defined in Wikipedia as “a programming technique in which
computer programs have the ability to treat other programs as their data. It means that
a program can be designed to read, generate, analyze or transform other programs,
and even modify itself while running”. That design idea is central to many Artificial
Intelligence systems and AI inspired languages35 and is also common in software en-
gineering36 [Lenat:1983:Eurisko, Lenat:1983:theory, Lenat:1991:ev-cycl, Pitrat:1996:FGCS,
Pitrat:2009:AST, Pitrat:2009:ArtifBeings, Pitrat:blog, Queinnec:1996:LSP, Queinnec:2004:ContinWeb,
Starynkevitch-1990-EUM, Starynkevitch-DSL2011, Starynkevitch-GCCMELTweb,
Starynkevitch:2007:Multistage, Starynkevitch:2019:bismon-draft, Tschudin:2005:HarnessingSC,
abelson:1996:sicp, briot:1987:uniform, chambers:1991:efficient, cointe:1987:metaclasses,
dormoy:1992:meta, fouet-starynkevitch:describing-control:1987, greiner:1980:representation,
hernandez-phillips:2019:debugging-bootstrap, hofstadter:2007:strange-loop, kay:1996:early-smalltalk,
kelsey:1998:r5rs, kumar:2015:importance-expert-systems, matthews:2005:operational,
mazur:2004:compile, nigro:2008:meta, queinnec:2003:lisp, Starynkevitch:2009:grow,
serrano:1995:bigloo]. Generating some “source” code at build time is usual prac-
tice, advocated also by the NINJA build system, and theorized (around 1930, before
even computers existed) in the CHURCH-TURING thesis. Related concepts include
the famous (but undecidable) halting problem (whose proof involves a metapro-
gramming approach [Hofstadter:1979:GEB]), hygienic macros, and Rice’s theo-
rem.

Practically speaking [abelson:1996:sicp], metaprogramming is easier achieved
by explicitly representing (maybe incomplete) code with abstract syntax trees (or
AST), maybe with some holes for metavariables for their later explicit substitu-
tion, in the spirit of DJANGO templates or of COMMON LISP macros or SCHEME

macros. A practical way to implement such a template machinery for generating
C or C++ code is given by GCC MELT code chunks [Starynkevitch-DSL2011,
Starynkevitch-GCCMELTweb, Starynkevitch:2009:grow, Starynkevitch:2007:Multistage],
where a piece of C (or C++) code with holes (or metavariables) $hellochunk and
$msg is given through the “macro-string” #{/*$hellochunk#_here*/ printf("hello %s\n", $msg);}#

...
Later, such a macro-string or code chunk can be expanded by filling the holes, that is
expanding the metavariables (e.g.$msg) appropriately. Such an expansion might be
recursive, since some hole filling (or metavariable replacement) could in turn trigger

35See also SCHEME 48, SBCL, RUST, even C++ templates, CHICKEN SCHEME, METAOCAML,
the ECLIPSE Constraint Programming System, RASCAL, NEMERLE, COCCINELLE, OCSIGEN, GNU

PROLOG, CLIPS, GPP, SWIG, ANTLR, IBURG, Gnu BISON, etc . . .
36A typical example is the GCC compiler, or AUTOCONF, and transpiler approaches

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 14

https://en.wikipedia.org/wiki/Metaprogramming
https://ninja-build.org/
https://en.wikipedia.org/wiki/Church-Turing_thesis
https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Hygienic_macro
https://en.wikipedia.org/wiki/Rice's_theorem
https://en.wikipedia.org/wiki/Rice's_theorem
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Metavariable
https://en.wikipedia.org/wiki/Explicit_substitution
https://en.wikipedia.org/wiki/Explicit_substitution
https://docs.djangoproject.com/en/2.2/topics/templates/
https://lispcookbook.github.io/cl-cookbook/macros.html
https://en.wikibooks.org/wiki/Scheme_Programming/Macros
https://en.wikibooks.org/wiki/Scheme_Programming/Macros
https://gcc.gnu.org/wiki/MELT tutorial
http://s48.org
http://sbcl.org/
http://https://www.rust-lang.org/
https://en.cppreference.com/w/cpp/language/templates
https://www.call-cc.org/
 http://okmij.org/ftp/ML/MetaOCaml.html
http://eclipseclp.org/
https://www.rascal-mpl.org/
http://nemerle.org/
http://coccinelle.lip6.fr/
https://ocsigen.org/
http://www.gprolog.org/
http://www.gprolog.org/
http://www.clipsrules.net/
https://logological.org/gpp
http://swig.org/
https://www.antlr.org/
https://github.com/drh/iburg
https://www.gnu.org/software/bison/
http://gcc.gnu.org
https://en.wikipedia.org/wiki/Autoconf
https://en.wikipedia.org/wiki/Source-to-source_compiler

REFPERSYS high-level goals and design ideas

expansions of other macro-strings. In practice, REFPERSYS will use similar code
chunks and macro-expansion to generate its C (or C++) code, and some initial ad-
hoc integrated development environment (or IDE) will have to be coded, handling
passively some persistent store. The expansion will be done through some scripting
language (or domain specific language, a.k.a. DSL) which has to be implemented
inside our IDE.

Metaprogramming involves code generation (using source-to-source ahead-of-
time and/or just-in-time37 compilation techniques [Aho:2006:dragon-book], and in
REFPERSYS is useful for many tasks, such as generating the garbage collection
support routines for scanning or forwarding, and the loading and dumping routines
needed for persistence (in the spirit of RPCGEN, SWIG and other serialization frame-
works).

In REFPERSYS, metaprogramming is often and practically achieved (like in
[Starynkevitch-DSL2011, Starynkevitch:2019:bismon-draft, Pitrat:1996:FGCS,
Pitrat:2009:ArtifBeings] and our manydl.c example program), by generating
some C or C++ code in a temporary file38 like /tmp/rpsgen123.c, compiling
that file [drepper:2011:write-shared-lib] into a generated plugin /tmp/rpsgen123.so
by running a process such as gcc -fPIC -Wall -O -g -shared /tmp/rpsgen123.c

-lsomething -o /tmp/rpsgen123.so and waiting for its successful completion,
then dlopen(3)-ing that newly generated /tmp/rpsgen123.so, in a manner
compatible with our garbage collection and agenda invariants. We might later care
about carefully dlclose(3)-ing that generated plugin, but in practice we accept
some limited virtual memory plugin leak, and we could just dump appropriately our
persistent state by mentioning in some generated Manifest file those plugins which
should be saved (as generated C code) with the state.

Reflection is “the ability of a process to examine, introspect, and modify its own
structure and behavior” and also, for self-reflection, the capacity “ to exercise intro-
spection and to attempt to learn more about their fundamental nature and essence”.
(Wikipedia). It is advocated (in [Pitrat:2009:ArtifBeings]) that a similar approach
is (painfully) achievable in AI systems, and it would need both clever backtracking
and backtracing techniques. Libraries such as Ian Taylor’s libbacktrace (which
wants most of the code to be compiled with DWARF debugging information39) are
helpful.

37Several JIT compilation libraries exist, notably libgccjit provided inside recent GCC compil-
ers.

38There are practical reasons to generate these temporary files outside of /tmp/, which gets cleaned
at reboot.

39In practice we should compile our or other C or C++ code with both -O2 -g passed while invoking
GCC or g++, and this is indeed possible and practically works well enough.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 15

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Source-to-source_compiler
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/RPCGEN
http://swig.org/
https://en.wikipedia.org/wiki/Serialization
https://github.com/bstarynk/misc-basile/blob/master/manydl.c
http://man7.org/linux/man-pages/man3/dlopen.3.html
http://man7.org/linux/man-pages/man3/dlclose.3.html
https://en.wikipedia.org/wiki/Manifest_file
https://en.wikipedia.org/wiki/Reflection_(computer_programming)
https://en.wikipedia.org/wiki/Self-reflection
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Stack_trace
https://github.com/ianlancetaylor/libbacktrace
https://en.wikipedia.org/wiki/DWARF
https://gcc.gnu.org/onlinedocs/jit/
http://gcc.gnu.org
https://gcc.gnu.org/onlinedocs/gcc/Invoking-GCC.html

REFPERSYS high-level goals and design ideas

Our precise garbage collector (see §3 below and [rafkind:2009:precise-gc], or
QISH) wants local variables holding garbage collected pointers to be known to the
GC. In practice, the REFPERSYS call frame is some explicit local struct named _
in generated C code40. Such explicited local frames can often be optimized by GCC
or g++ (invoked with -O2).

As suggested by Pitrat (see [Pitrat:1996:FGCS, Pitrat:2009:AST, Pitrat:2009:ArtifBeings]),
call stack reflection and backtrace is the elementary brick of more sophisticated in-
trospection techniques. At some point, our REFPERSYS system should inspect its
call stack and may take decisions after that. A typical approach would be to run such
introspection once in a while (e.g. every 0.1 second on the average41, in the inference
engine of some expert system or knowledge base component of REFPERSYS.

Since we aim to be able to re-generate most (and hopefully all) of REFPER-
SYS code (in C or in C++), having simple coding conventions does matter: ev-
ery REFPERSYS-defined C or C++ identifier should start with rps_ in lower, up-
per, or mixed case (e.g. also RPS_ or Rps_). Every C or C++ function, even
static inline ones appearing in header files, has its name starting with rps_
and is globally unique to the entire refpersys program. The C (or C++) code
should be automatically indented42 using Gnu INDENT or ASTYLE. Every named
struct (in C) should have its tag matching rps_*st. Every typedef-ed data
type should have its name matching rps_*t. Every named enum should have its
tag matching rps_*en and the various enumerated values like RPS_*. Even in
cases the C (or the C++) language allows several name spaces43, we don’t use that
facility. Hence we refuse to code the common typedef struct rpsfoo_t

rpsfoo_t; but prefer instead (inspired by GTK) coding typedef struct

rps_foo_st rps_foo_t. Of course, names of local variables (that is automatic
variables with their lexical scope limited to some small C or C++ block) could be as
short as a single letter such as i. In general, our C or C++ code is written with the
hope of being easily able to regenerate it.

40Like Bismon does, see its LOCAL_BM macro. See also the CAMLparami and CAMLlocalj C
macros of OCAML, and the Py_VISIT and Py_DECREF and other macros of PYTHON, the foreign
function interface of SBCL, etc . . .

41Timing considerations are essential, practically speaking, in REFPERSYS. See time(7) man
page.

42With the social convention that REFPERSYS contributors are running omake indent or make
indent before every git commit!

43In C, having both a type and a label named foo is permitted, but we refuse such non-sense.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 16

http://starynkevitch.net/Basile/qishintro.html
https://en.wikipedia.org/wiki/Inference_engine
https://en.wikipedia.org/wiki/Inference_engine
https://en.wikipedia.org/wiki/Expert_system
https://en.wikipedia.org/wiki/Knowledge_base
https://www.gnu.org/software/indent/
http://astyle.sourceforge.net/
http://gtk.org
https://en.wikipedia.org/wiki/Local_variable
https://en.wikipedia.org/wiki/Automatic_variable
https://en.wikipedia.org/wiki/Automatic_variable
https://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scoping
https://en.wikipedia.org/wiki/Block_(programming)
http://github.com/bstarynk/bismon/
https://caml.inria.fr/pub/docs/manual-ocaml/intfc.htm
https://docs.python.org/3/extending/
http://www.sbcl.org/manual/index.html#Foreign-Function-Interface
http://www.sbcl.org/manual/index.html#Foreign-Function-Interface
http://man7.org/linux/man-pages/man7/time.7.html

REFPERSYS high-level goals and design ideas

3 The data and object models of REFPERSYS

The data is what is processed by REFPERSYS, and is made of values (and, inter-
nally for the GC, also of quasi-values, which are pointers to GC-managed memory
zones). The object model is defining our classes, our single inheritance mechanism,
our message sending protocol (see §3.8.2).

3.1 how data should be processed in REFPERSYS

REFPERSYS aiming to be first a good old fashioned AI system (GOFAI), better
known as symbolic artificial intelligence system, it is targetting mostly symbolic
computation, in particular using a semantic network or other forms of mathematical
finite but large graph representations, in particular abstract syntax trees44 of gener-
ated programs, of internal rules or expressions, by some internal metaprogramming
machinery. So REFPERSYS objects should have a finite but changing set of attributes
or properties and be organized, as in most object-oriented languages. Hence, docu-
ments, hypertext, high-level source code, ontologies, knowledge bases, expert sys-
tems, implementation of some inference engine guided by metarules, etc . . . should
all be easily and conveniently representable45 and processable, as some evolving sub-
graph of REFPERSYS values.

Since REFPERSYS objects are the only mutable values, they keep not only their
synchronization data, but also attributes or properties, components, and some extra
payload46. See also §3.4 below.

The REFPERSYS worker threads, organized in a small thread pool47 are some-
how organized in some agenda48 mechanism. Informally, the agenda is a clever
organization (perhaps a few mostly FIFO queue of elementary tasklets, or something
more complex). Each such tasklet runs for a short time49 and may, while running,
update that agenda by adding further runnable tasklets to it, or by removing some of
them. The agenda itself should be somehow reified and partly persistent, and tasklets
are REFPERSYS objects. Of course some tasklets (e.g. those directly related to the
user interface, e.g. AJAX or QT callbacks) are transient.

44Practically speaking, abstract syntax trees are in fact at least finite directed oriented graphs and
could even have cycles if you relate a symbol to its properties.

45So artifacts like XML documents, HTML5 or XHTML hypertexts, JSON data, YAML representations
should all be easily representable and inspirational for REFPERSYS data and its processing.

46From the GC point of view, payloads are quasi-values . . .
47Threads are heavy resources, each of them needing a call stack and, practically speaking, a proces-

sor core to run. We surely want to have at most a dozen of worker threads.
48In Latin, “agenda” means “things which have to be done or completed”.
49In practice, several dozens of milliseconds, to play nice with human interaction and be friendly

with our garbage collector

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 17

http://bootstrappingartificialintelligence.fr/WordPress3/2013/12/the-future-of-ai-is-the-good-old-fashioned-artificial-intelligence/
https://en.wikipedia.org/wiki/Symbolic_artificial_intelligence
https://en.wikipedia.org/wiki/Computer_algebra
https://en.wikipedia.org/wiki/Computer_algebra
https://en.wikipedia.org/wiki/Semantic_network
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Attribute_(computing)
https://en.wikipedia.org/wiki/Property_(programming)
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Electronic_document
https://en.wikipedia.org/wiki/Electronic_document
https://en.wikipedia.org/wiki/Hypertext
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Ontology_(information_science)
https://en.wikipedia.org/wiki/Knowledge_base
https://en.wikipedia.org/wiki/Expert_system
https://en.wikipedia.org/wiki/Expert_system
https://en.wikipedia.org/wiki/Inference_engine
https://en.wiktionary.org/wiki/metarule
https://en.wikipedia.org/wiki/Thread_pool
https://en.wikipedia.org/wiki/Agenda
https://en.wikipedia.org/wiki/FIFO
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Ajax_(programming)
http://qt.io/
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Symbol_(programming)
https://en.wikipedia.org/wiki/Artifact_(software_development)
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/XHTML
http://json.org/
https://yaml.org/

REFPERSYS high-level goals and design ideas

3.2 data at the low and high levels

REFPERSYS mostly handle values50, which can be either “light” immutable values
or “heavy” mutable objects. Our data model is inspired by the OBJVLISP model (or
CLOS, see also the Common Lisp HyperSpec) common in most Lisp implementa-
tions [queinnec:2003:lisp, cointe:1987:metaclasses, briot:1987:uniform] and in-
spired by SMALLTALK [kay:1996:early-smalltalk]. Also, a value can be transient
or persistent. Each REFPERSYS value fits in one 64 bits machine word51, so is nicely
represented as an aligned pointer (ending with a 0 bit) or a tagged integer (63 bits,
with the least significant bit being set to 1). Values are usually pointers to complex
structures, so, per the x86-64 calling conventions, are word aligned (address multiple
of 8 bytes). Let’s call genuine values those that are not null and not tagged pointers
(so either immutable values or objects in figure 3). These genuine values (and also
quasi-values) are practically implemented as a tagged union52 and each of them start
with a field (probably 16 bits) identifying their concrete type.

3.2.1 values and quasi-values

The REFPERSYS garbage collector manages both values and quasi-values (that is,
a single non-empty sequence of memory words, used for some garbage collected
data, e.g. inside objects). But only persistent values are dumped and reloaded in the
persistent store. The values which are not dumped -so not reloaded on the next run-
are called transient values.

For pragmatical reasons, our values53 should be both ordered and hashed, since
many data structures [cormen:2009:introduction], specified as some abstract data
type, either uses some ordering (e.g. in red-black trees) or some hash-code (e.g.
various kinds of hash tables). Because of the weird and counter-intuitive semantics
of floating point numbers, the NAN should be handled specifically (it is unordered),
if we box IEEE doubles.

3.2.2 implementation details

REFPERSYS takes advantage of some practical features54 of C on Linux x86-64:
50In particular, only CLOSURES are applied, to arguments which are values (read more about λ-

calculus); or messages are sent, to values with perhaps additional value arguments. Internally, our GC
also handle quasi-values.

51Remember: REFPERSYS targets only Linux x86-64 systems!
52An old example of tagged unions in C is the X11 event structure, but GUILE and OCAML use

similar implementation tricks.
53Of course, quasi-values need not to be ordered and hashed!
54We don’t really care if these features are not exactly standard C11 [c11-standard:2011], because

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 18

https://en.wikipedia.org/wiki/ObjVlisp
https://en.wikipedia.org/wiki/Common_Lisp_Object_System
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
https://en.wikipedia.org/wiki/Smalltalk
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://medium.com/@hinchman_amanda/null-pointer-references-the-billion-dollar-mistake-1e616534d485
 https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/Hash_table
http://floating-point-gui.de
https://en.wikipedia.org/wiki/NaN
https://en.wikipedia.org/wiki/Object_type_(object-oriented_programming)#Boxing
https://en.wikipedia.org/wiki/Function_application
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lambda_calculus
https://tronche.com/gui/x/xlib/events/structures.html
https://www.gnu.org/software/guile/manual/html_node/A-Simple-Representation.html
https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html

REFPERSYS high-level goals and design ideas

• Practically, machine data pointers should be at least 64 bits (8 bytes) aligned55

for large enough memory zones (i.e. most practical struct-s), annd prefer-
ably 128 bits, that is 16 bytes, aligned. See also the alignof macro of
<stdalign.h> and the aligned type attribute.

• Limited type-punning abilities. Assume we have two struct-ures definitions,

so struct s1 and struct s2. Assume that both s1 and s2 start with the same

common fields unsigned num; then void*ptr; followed by char str[24];.

Assume that a pointer p points to a valid memory zone, whose alignment (respec-

tively size) are at least all of alignof(struct s1), sizeof(struct s1),

alignof(struct s2), sizeof(struct s2): so we have alignof(typeof(*p))

>= alignof(struct s1) && sizeof(*p) >= sizeof(struct s1) and

alignof(typeof(*p)) >= alignof(struct s2) && sizeof(*p) >=

sizeof(struct s2). Then: ((struct s1*)p)->num and ((struct s2*)p)-

>num both refer to the same memory location and number there; ((struct s1*)p)-

>ptr and ((struct s2*)p)->ptr both refer to the same memory location and

pointer there; and of course ((struct s1*)p)->str and ((struct s2*)p)-

>str is the same string. See also may_alias, warn_if_not_aligned,
aligned, transparent_union GCC type attributes, the -fms-extensions
option to GCC, and its unnamed fields ability.

• Tail call optimization, practically provided in some common cases by recent
GCC or CLANG/LLVM compilers (requiring probably -O2 compiler flag).

• Common extensions to the C language, notably statement exprs (very useful),
label as values (or “computed goto”-s), typeof, zero-length arrays and flex-
ible array members, return addresses and other built-ins, may be used in REF-
PERSYS code.

Practically speaking, every REFPERSYS value or quasi-value (see our Rps_QuasiZone
class) which sits in memory56 is represented in some class inherited from Rps_ZoneValue

For instance, our string values have their memory zone type declared as Rps_String,
but we use the Rps_StringValue class to construct them. In Rps_String the
field _sbuf is a flexible array member, and by convention contains _bytsiz +

1 bytes (terminated with a 0 byte), is validly UTF-8 encoded, aligned to 4 bytes
and nul-byte terminated. Hash codes cannot be 0 and are lazily computed (so the

we strongly believe they are present on practical Linux x86-64 computers.
55The X86-64 or AMD64 instruction set architecture allows in principle unaligned memory accesses,

but these are very slow and unfriendly to cache coherence hardware implementations.
56This excludes tagged integers, and that memory zone is at least word aligned to 8 bytes.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 19

https://en.cppreference.com/w/c/language/_Alignof
https://gcc.gnu.org/onlinedocs/gcc/Common-Type-Attributes.html
https://en.wikipedia.org/wiki/Type_punning
https://gcc.gnu.org/onlinedocs/gcc/Common-Type-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Unnamed-Fields.html
https://en.wikipedia.org/wiki/Tail_call
http://gcc.gnu.org/
http://clang.llvm.org/
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/Statement-Exprs.html
https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://gcc.gnu.org/onlinedocs/gcc/Typeof.html#Typeof
https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
https://en.wikipedia.org/wiki/Flexible_array_member
https://en.wikipedia.org/wiki/Flexible_array_member
https://gcc.gnu.org/onlinedocs/gcc/Return-Address.html
https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
https://en.wikipedia.org/wiki/Flexible_array_member
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Cache_coherence

REFPERSYS high-level goals and design ideas

rps_strhash field is computed once when it was 0). The Rps_Type::String
is some enumerator inside a global enum. Strings are ordered naturally, using
strcmp on their rps_strdata bytes.

The refpersys executable is handling files either from the REFPERSYS home
directory (obtained inside C++ code using a rps_homedir() call), given by
$REFPERSYS_HOME or $HOME environment variables or thru the -refpersys-
home program argument, or from the REFPERSYS load directory (by default the
source directory, or given thru the -load program argument). User preferences
should go into the REFPERSYS home directory, e.g. as the .refpersys.json
file there.

@@TODO: should explain more implementation details in C++ terms?

3.3 immutable values

By definition, immutable values don’t change. All their useful bits57 stay unchanged
as long as the value is alive. Some values are scalar (strings, vectors of floats, perhaps
bitmaps58 if we reify them). Other values are composite.

Since objects are fundamental, we want to keep finite collections of them. In
particular, REFPERSYS will reify (represent as first-class immutable values) tuples
of objects and finite sets of objects as values, and also , and they are the common
composite values of REFPERSYS. A tuple is obviously represented by boxing a se-
quence of object references (i.e. pointers). A set would be represented by an ordered
sequence of object pointers, with membership efficiently testable by a O(log n) time
binary search algorithm). We expect most of tuples and sets to be small and fitting in
an L1 or L2 cache line, so their processing should be efficient.

In REFPERSYS, closures -that is first-class procedural values, like in SCHEME59

[kelsey:1998:r5rs, matthews:2005:operational, Queinnec:1996:LSP, Queinnec:2004:ContinWeb,
abelson:1996:sicp], HOP or BIGLOO [serrano:1995:bigloo], COMMON LISP, JAVASCRIPT

- are also immutable values. The closed values -binding free variables of the closure-
inside such closures are arbitrary, but fixed, and won’t change during the lifetime
of that closure. The function code inside them is given by some fixed object reify-
ing that code, and probably useful to generate the “source” code (e.g. as generated
C or C++ code) of that function. The mangled name, later “dlsym(3)-ed”, of
that function in its ELF *.so shared object file [drepper:2011:write-shared-lib,

57For housekeeping purposes, our garbage collector may reserve a few bits, e.g. for tri-color marking
[wilson:1992:uniprocessorgc]

58In practice, bitmaps or pixmaps would rather be the payload of some objects, see below.
59Try for example GNU GUILE following this tutorial.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 20

https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Set_(abstract_data_type)
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Cache_hierarchy
https://en.wikipedia.org/wiki/Closure_(computer_programming)
http://hop.inria.fr/home/index.html
https://www-sop.inria.fr/mimosa/fp/Bigloo/
http://www.lispworks.com/documentation/HyperSpec/Front/index.htm
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Name_mangling
http://man7.org/linux/man-pages/man3/dlsym.3.html
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Library_(computing)#Shared_libraries
https://www.memorymanagement.org/glossary/t.html
https://www.gnu.org/software/guile/
http://starynkevitch.net/Basile/guile-tutorial-1.html

REFPERSYS high-level goals and design ideas

levine:1999:linkers-loaders] is somehow related60 to the objid of that object. Clo-
sures are absolutely essential in REFPERSYS, since they are the only way to re-
fer to executable machine code. Even method implementations are using clo-
sures, since the virtual method table in REFPERSYS classes (actually, their payload)
is referring to closures (is is an association between selectors (like in Objective-
C, but reified as objects) and closures implementing methods, à la OBJVLISP

[cointe:1987:metaclasses, abadi:1995:imperative]).
We may consider also having in REFPERSYS immutable node61 instances: like

mutable objects (see §3.4 below), each of them would have a class (with single-
inheritance), attributes and components. But since they are immutable, they have no
objid, no locking mechanism, and their class, attributes and components would be
fixed and defined at their creation time.

In C++ code, values are Rps_Value, a “smart” value container, actually a single
word. That class is specialized into helper subclasses, such as Rps_StringValue,
Rps_DoubleValue etc.

3.3.1 immutable scalar values

Immutable scalar values include:

• strings, persisted as JSON strings; their internal representation is Rps_String
using an UTF-8 encoding. In C++, use Rps_String::make to make one,
or construct an Rps_StringValue with a C or C++ UTF-8 encoded string,
a std::string, or a QString.

• boxed doubles62 (which cannot hold an IEEE-754 NaN, which is incom-
parable), persisted as JSON doubles; their internal boxed representation is
Rps_Double. In C++, use Rps_Double::make to make one, or construct
an Rps_DoubleValue with a C double.

3.3.2 immutable composite values

Immutable composite values include:

• tuples of object references. Their memory representation is a Rps_TupleOb
zone, and it has both Rps_TupleOb::make and Rps_TupleOb::collect

60For a fictional example, an object of objid _6lNdgIkKhwD04laO94 might be related to some
ELF function of name close to rps_6lNdgIkKhwD04laO94, etc . . .

61REFPERSYSnodes are generalizing BISMON nodes [Starynkevitch:2019:bismon-draft], which
are immutable, have an object connective and a sequence of sons which are arbitrary values. Perhaps
“node” is a wrong word and we could name them “records” or “structures”.

62See floating-point-gui.de for more about IEEE 754 double precision numbers on current
computers. This is actually a difficult topic.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 21

https://en.wikipedia.org/wiki/Virtual_method_table
https://en.wikipedia.org/wiki/Objective-C#Messages
https://en.wikipedia.org/wiki/Objective-C#Messages
http://floating-point-gui.de
https://en.wikipedia.org/wiki/IEEE_754

REFPERSYS high-level goals and design ideas

static functions. But use Rps_TupleValue to build them. @@TODO:
should explain more

• set of object references; Their memory representation is a Rps_SetOb zone,
and it has both Rps_SetOb::make and Rps_SetOb::collect static
functions. But use Rps_SetValue to build them. @@TODO: should ex-
plain more

@@TODO: should explain a lot more

3.4 mutable objects

Practically speaking, mutable objects are heavy, since they should carry inside them
locking devices63 for multi-threading support. And each object carries an association
between attributes (playing the role of arbitrary keys) and their corresponding value.
In addition, an object can carry its payload64 for stuff which does not fit into that
model. For example, an object may carry as its payload a dictionary associating
machine strings to values, or an hash-table of triplets, or an opened FILE* handle,
or file descriptor65, or some TENSORFLOW or GHUDI data for machine learning
purposes, maybe something related to libonion or ZeroMQ, some GMPLIB big
number, some PPL polyhedra, maybe some QT graphical widget, etc Of course
every object has its class (which is itself an object, having a metaclass) and carries a
function pointer66, for REFPERSYS closures.

Notice that a generational GC approach moving data is possible for some im-
mutable values, but not for objects and their optional payload, since REFPERSYS

objects contain locks and payloads that are dealt with through external functions re-
quiring fixed, unchangeable, pointers.

In C++ code, object references are Rps_ObjectRef, a “smart” object con-
tainer, actually a single word. They are persisted by their objid in JSON format as a
string.

3.4.1 objects as frame-like data

REFPERSYS objects are quite flexible, even more than JAVASCRIPT67 ones; they take
63At the implementation level, think of some mutex or preferably some read-write lock, so

pthread_mutex_init or pthread_rwlock_init or C++11 equivalents.
64Every payload belongs to a single object, its owner!
65Finalizers are practically not enough to handle these, even if they are useful, in our GC, as a last

resort mesure!
66That function pointer should be, for efficiency reasons (we don’t want to lock an object to get that

pointer!) atomic in C parlance, and might be set using dlsym(3).
67Remember that in JAVASCRIPT ob.fl is defined to be the same as ob[’fl’], the equivalent of

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 22

https://en.wikipedia.org/wiki/File_descriptor
https://www.tensorflow.org/
https://gudhi.inria.fr/
https://github.com/davidmoreno/onion/
http://zeromq.org
https://gmplib.org/
https://www.bugseng.com/ppl
http://qt.io/
https://en.wikipedia.org/wiki/Metaclass
https://computing.llnl.gov/tutorials/pthreads/#Mutexes
http://tuxthink.blogspot.com/2013/02/using-read-write-lock-in-pthreads.html
http://tuxthink.blogspot.com/2013/02/using-read-write-lock-in-pthreads.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_mutex_init.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_rwlock_init.html
https://en.cppreference.com/w/cpp/thread
https://en.wikipedia.org/wiki/Finalizer
https://en.cppreference.com/w/c/atomic
http://man7.org/linux/man-pages/man3/dlsym.3.html

REFPERSYS high-level goals and design ideas

some inspiration from RLL [greiner:1980:representation], EURISKO [Lenat:1983:Eurisko,
Lenat:1983:theory], CYC and its CYCL [Lenat:1991:ev-cycl], and more recently
the Semantic Web and its OWL. An object has attributes (usually a few ones, but
perhaps many of them) and components (again, perhaps 0 or a few of them, but in
rares cases thousands of them), and some optional payload (quite often, it is miss-
ing). Notice the similarity with JAVASCRIPT objects (which calls fields with keys
what REFPERSYS calls attributes, and array elements what are REFPERSYS com-
ponents). However, JAVASCRIPT is (like IO or SELF [chambers:1991:efficient])
a prototype-based object programming language, while REFPERSYS remains, like
JAVA or C#, or COMMON LISP (and of course C++ or GO), a more or less class-
based object programming language with single inheritance: in REFPERSYS (like
in C# or JAVA) all objects are indirect instances of the same single top-level class
(which is reified as an object, using some metaclass machinery).

Through their flexible attributes (each of them can be fetched, added, removed
or changed during the lifetime of the containing object), REFPERSYS objects68 can
be used to represent frames (read about frame languages) or semantic networks and
other forms of graph databases (held entirely in memory).

REFPERSYS objects keep (like BISMON objects do [Starynkevitch:2019:bismon-draft])
their modification time (or objmtime) and that timestamp69 may be useful to decide
some further processing (à la make).

@@TODO: should explain a lot more

3.4.2 concrete examples of objects

In the below examples, ρ “some foo” would be the “reification” of some foo, that
is a REFPERSYS value for that some foo. When we are certain that some foo is
represented by a REFPERSYS mutable object (not some immutable value), we would
write Ω “some foo” instead of ρ “some foo”

REFPERSYS contributors should be known to the REFPERSYS system70. So a
typical contributor would be “reified” by an object of objid _3a9otsskmcJ04v9S7n

representing him, shown in figure 4.

fetching attribute or field fl from an object ob. And ob[1] is like component of index 1 in object ob.
68REFPERSYS objects are also -conceptually- inspired by the GOBJECT framework of GNOME.
69The timestamp is implemented as a double floating point representing elapsed seconds since the

UNIX Epoch, obtained with clock_gettime(2) using CLOCK_REALTIME.
70In 2019, we ignore subtle issues like European GDPR since it focuses on transmission of personal

data, assuming that every contributor to REFPERSYS consciously decided to contribute to REFPERSYS

on his own free will. We believe, similarly, that git users also have decided to use it with their freedom.
We are not lawyers.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 23

https://en.wikipedia.org/wiki/Cyc
https://en.wikipedia.org/wiki/Semantic_Web
https://www.w3.org/TR/owl-ref/
http://iolanguage.com/
https://en.wikipedia.org/wiki/Prototype-based_programming
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.cppreference.com/w/cpp
https://golang.org/
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://en.wikipedia.org/wiki/Metaclass
https://en.wikipedia.org/wiki/Frame_(artificial_intelligence)
https://en.wikipedia.org/wiki/Frame_language
https://en.wikipedia.org/wiki/Semantic_network
https://en.wikipedia.org/wiki/Graph_database
https://developer.gnome.org/gobject/stable/
https://en.wikipedia.org/wiki/Unix_time
http://man7.org/linux/man-pages/man2/clock_gettime.2.html
https://eugdpr.org/

REFPERSYS high-level goals and design ideas

∈ Ω “ contributor class” the class
Ω “first name” : string "Basile" attribute

Ω “last name” : string "Starynkevitch" attribute

Ω “email” : string "basile@starynkevitch.net" attribute

Ω “year of birth” : tagged integer #1959 attribute

Ω “friends” : set { _6eO8kozzUh801dHVt7 _7zpWFJ2npj001ZfVvq } attribute

Ω “Basile STARYNKEVITCH” ≡ _3a9otsskmcJ04v9S7n

Figure 4: An example of object representing a contributor

The REFPERSYS system could flexibly add additional information, e.g. with
an attribute Ω “authored” associated to some tuples of objects authored by that Ω
“Basile STARYNKEVITCH”. Should his email change, that could be represented by
overwriting attribute Ω “email” with a string such as "basile@refpersys.org".
It is important that attributes are themselves objects: one could imagine that the
object Ω “email” could contain an attribute Ω “how to display” associated with
a closure, which would be applied to show that email cleverly (e.g. as some HTML5 element).

Another example of object might be some code chunk to safely print into $fil
an integer $i, e.g. #{ if ($fil != NULL) fprintf($fil, "%d", $i);}# might
be represented as in figure 5:

∈ Ω “code chunk class” the class
Ω “metavariables” : set { Ω “$i”, Ω “$fil” } attribute

Ω “target language” : Ω “C language” attribute

[0] string " if (" component

[1] object Ω “$fil” component

[2] string " != NULL) fprintf(" component

[3] object Ω “$fil” component

[4] string ", \"%d\", " component

[5] object Ω “$i” component

[6] string ");" component

Figure 5: a simplified example of code chunk

REFPERSYSis coded only for LINUX/X86-64 with an English locale, using
UTF-8.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 24

REFPERSYS high-level goals and design ideas

3.4.3 object payloads

Objects may have some optional unique payload. The payload is owned by a single
object (its owner). The payload data is generally mutable, and contains stuff which
does not fit into the object model (see §3.8 below). The payload may be persistent,
but some payloads are obviously transient (e.g. an opened file handle, or a Qt widget).
At the implementation level, a payload is some garbage-collected quasi-value whose
“type” starts with Payl in C++. By convention, the class of an object may require
a particular payload: for example objects which are classes have to have a payload
which is a class information.

Payload may be:

• a class information (inside classes, Rps_Type::PaylClassInfo and
Rps_PayloadClassInfo) which gives the superclass object and the dic-
tionary of methods (see §3.8.2 and figure 12).

• a mutable set of objects Rps_Type::PaylSetOb (see figure 13).

• a mutable vector of objects Rps_Type::PaylVectOb (see figure ??).

• a mutable vector of values Rps_Type::PaylVectVal

• a mutable association from objects to values Rps_Type::PaylAssoc

• a mutable binary relation between objects Rps_Type::PaylRelation

• a mutable string buffer Rps_Type::PaylStrBuf

• etc . . .

Some payloads could be erased or replaced by another kind of payload, but some
payloads are not erasable; for example, it makes no sense to replace a class informa-
tion payload by a string buffer one in the same class object. Hence payloads have a
is_erasable member function in C++.

3.5 File naming

Our C++17 hand-written files are named like *_rps.cc for source files, and

*_rps.hh for header files, with a special case for the common refpersys.hh
super-header file including most others. If they use QT5 extensions requiring its moc
they would be named *qrps.cc for Qt C++ source files and *qrps.hh Qt C++
header files.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 25

https://doc.qt.io/qt-5/moc.html

REFPERSYS high-level goals and design ideas

Documentation goes under doc/ (preferably in LATEX, probably the LUALATEX
variant). It could need inkscape version 0.92 or better and GRAPHVIZ version 2.40
or better.

Temporary C++ generated files, including those generated by moc should be
named with something starting with an underscore _ if they don’t need to be git
commit-ed.

Permanent C++ generated files which have to be version controlled so git add-
ed go under refpersys/generated/ directory.

Every hand written C++ file should have a proper GPLv3+ comment at start. The
copyright owner is the REFPERSYS team. We mention refpersys.org, and we
list every human member of it.

3.6 Building refpersys executable

Dependencies: We need the latest JsonCpp library, at least its version 1.7. We
need QT5, at least version 5.12. Our build automation system is omake version
0.10.3 or better. We depend upon GNU bash installed as /bin/bash. We
need also pkg-config version 0.29 or better, suitably configured to play nice with
at least QT5. We could later need GNU unistring (for UTF-8 processing) and
maybe ANTLR4 (as a parser generator).

3.7 REFPERSYS workflow

As long as we are very few and part-time on that REFPERSYS project, we essen-
tially use git as an improved centralized version control system à la svn (so the
distributed nature of git is irrelevant for us in 2019. Itc could become important
when the REFPERSYS matures and generates a lot of files). By social convention:
we git commit often (e.g. every hour or two of work). Before that, we omake
indent and we ensure that the code is buildable with omake clean followed
by omake -project before any git commit. We format and indent manually
written C++ code with omake indent or using our indent-cxx-files.sh
shell script before any git push.

Our git commit messages given by git log are starting with a short sen-
tence in English (ASCII characters only). If more than one sentence is needed, the
following ones should start with a blank line.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 26

https://inkscape.org/
https://www.graphviz.org/
https://doc.qt.io/qt-5/moc.html
https://www.gnu.org/licenses/gpl-3.0.en.html
http://refpersys.org/
https://github.com/open-source-parsers/jsoncpp
http://qt.io
https://en.wikipedia.org/wiki/Build_automation
http://projects.camlcity.org/projects/omake.html
https://www.gnu.org/software/bash/
https://www.freedesktop.org/wiki/Software/pkg-config/
http://qt.io
https://www.gnu.org/software/libunistring/
https://www.antlr.org/
https://git-scm.com/
https://subversion.apache.org/

REFPERSYS high-level goals and design ideas

Glossary

Artificial General Intelligence Artificial general intelligence (AGI) refers to the
specific capacity of a machine to learn and understand any intellectual task
that can be performed by a human being. It is the primary goal of some artifi-
cial intelligence research, and is sometimes referred to as “strong AI” or “full
AI” . 1

metaknowledge Metaknowedge is knowledge about knowledge, and is an inclusive
term spanning several disciplines. Bibliography, the academic study of books,
and epistemology, the philosophical study of knowledge, are examples of meta-
knowledge. Even the tagging of documents could be considered as metaknowl-
edge. In AGI, metaknowledge refers to the knowledge about knowledge-based
systems. A declarative system might be guided by metarules, that is “expert
system” rules to compile or interpret other rules (maybe themselves). . 2

Reflection Reflection is (according to Wikipedia) “the ability of a process to ex-
amine, introspect, and modify its own structure and behavior”, and related to
Self-reflection, the capacity of humans (and hopefully of artificial cognitive
systems, like REFPERSYS should become) “to exercise introspection and to
attempt to learn more about their fundamental nature and essence”. . 2

In practice, such a code chunk representation could be more compact; we could
assume that both the if keyword of C and the fprintf and NULL C identifiers occur
frequently enough to be refactored and each reified into its own object. Of course,
it might make sense to add an Ω “author” attribute in our code chunk, whose value
would be our _3a9otsskmcJ04v9S7n object of figure 4 above.

Obviously, some kind of data don’t fit exactly into such simple objects. Some
objects might represent a big hashtable of triplets, and such data has to be the payload
of that object. Other objects might reify sorted dictionaries mapping strings to values,
and their payload could be some red-black trees whose internal nodes would be GC-
managed quasi-values. And an opened FILE* would be represented and reified as
some object carrying a payload with some FILE* rps_filehandle; field.

@@TODO: TO BE WRITTEN

3.8 the REFPERSYS object model

Every REFPERSYS value belongs to some single class, reified as a particular REF-
PERSYS object. We first explain the inheritance graph (see §3.8.1), and then the

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 27

https://en.wikipedia.org/wiki/Artificial_general_intelligence
https://en.wikipedia.org/wiki/Metaknowledge
https://en.wikipedia.org/wiki/Reflection_(computer_programming)
https://en.wikipedia.org/wiki/Self-reflection
https://en.wikipedia.org/wiki/Red-black_tree

REFPERSYS high-level goals and design ideas

message sending protocol (see §3.8.2).

3.8.1 REFPERSYS inheritance graph

Every non-nil REFPERSYS value belongs to a single class, defining its behavior by
the set of selectors it is understanding for message sending. The figure 6 shows (with
simplification) the single-inheritance graph of REFPERSYS values. In practice we
expect many hundreds of classes and at least many hundred thousands values in a
mature persistent store.

object
class

class
metaclass

value
class

code chunk
class

contributor
class

string
class

set
class

"hello"
string

{$i, $fil}
set

some
code-chunk

basile
contributor

• objects (pink background)

• immutable values (azure background, horizontal lines)

• v −→ ω (straight black arrow) means : v is instance of class ω

• ω1− → ω2 (dashed blue arrow) means : class ω1 is subclass of ω2

Figure 6: The simplified inheritance graph in REFPERSYS

That figure 6 shows several objects:

• the OBJECT class, superclass of every object;

• the CLASS metaclass, class of every class;

• the VALUE class, ultimate class of every value;

• the CODE CHUNK class, for code chunks like in figure 5;

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 28

REFPERSYS high-level goals and design ideas

• the CONTRIBUTOR class, for reified contributors like in figure 4;

• the STRING class, of immutable string values;

• the SET class, of immutable set of objects;

• the BASILE contributor object of figure 4;

• some code-chunk object, like in figure 5;

and several immutable values:

• the "hello" string;

• set of two chunk metavariables { Ω($i),Ω($fil) } which appears as value
of attribute Ω “metavariables” in figure 5

A REFPERSYS class object should contain, in its payload some class informa-
tion:

• the sequence of its direct then indirect super classes

• a flexible dispatch table or virtual method table71 associating selectors to clo-
sures handling messages with them. We call that association the direct method
dictionary of that class. It should be implemented efficiently (perhaps using
caching techniques local to each occurrence of sending).

Both are changeable. Any object can change its class at will at any time. A
class can have new methods added or removed at any time. A class can change its
superclass at will72.

3.8.2 REFPERSYS message sending

Our message sending protocol is inspired by those of SMALLTALK, COMMON LISP,
OCAML, JAVA. Every message send has a receiver ρ (the target of the message send-
ing), a selector - some object ωsel (what do we send) and optional extra arguments
α1 . . . αn (so n = 0 when we don’t have extra arguments). Conceptually, what is
happening is some loop:

• let κ be initially the class of ρ, the receiver or target.
71Our methods are always virtual, like for SMALLTALK; Conceptually REFPERSYS don’t have any

non virtual methods.
72However, this should be done with care, avoiding additional circularities in the inheritance graph.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 29

https://en.wikipedia.org/wiki/Dispatch_table
https://en.wikipedia.org/wiki/Virtual_method_table

REFPERSYS high-level goals and design ideas

• look into the method dictionary δ of class κ; if the selector ωsel is associated
to method µ (some closure), apply that µ to ρ, α1, . . . αn; the result of this
application is the result of the message sending.

• if κ is the topmost VALUE class, the message sending has failed.

• otherwise, replace κ by its direct superclass κ′ and repeat the method lookup
(second step here).

In practice, we might try to use caching techniques (but later) à la SELF or
JAVASCRIPT implementation to accelerate message sending. We should define
what happens when no method is found (perhaps using some MESSAGE-NOT-
UNDERSTOOD built-in selector à la SMALLTALK [kay:1996:early-smalltalk]), tak-
ing ωsel, α1, . . . αn as arguments, or triggering some exception machinery.

4 Persistence in REFPERSYS

The persistence of REFPERSYS is an essential feature. The refpersys program
starts by loading its persistent state (from various textual files under persistore/
directory73). In the usual case, a refpersys process dumps its persistent state
before exiting.

A manifest file named rps_manifest.json is describing the entire persisted
state and referencing indirectly other files. The figure 7 is giving the syntax of that
file.

manifest ← {
"format": "RefPerSysFormat2019A" mandatory format id
"spaceset": [idspace . . .] oids of spaces
"globalroots": [idroot . . .] oids of global roots
"plugins": [idplugin . . .] oids of dlopen-ed plugins
}

Figure 7: syntax of the manifest file rps_manifest.json

If _8J6vNYtP5E800eCr5q is a space oid idspace, then the persistent space
data is in JSON file persistore/sp_8J6vNYtP5E800eCr5q-rps.json.

73Of course, some other directory can be given through explicit program arguments to the
refpersys executable.

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 30

https://en.wikipedia.org/wiki/Manifest_file

REFPERSYS high-level goals and design ideas

For plugins, if _7GIB3ma21I200tfqDs is a plugin oid idplugin, its gener-
ated C++ source code should go into the file generated/rps_7GIB3ma21I200tfqDs-
mod.cc and the corresponding dlopen-ed plugin in plugins/rps_7GIB3ma21I200tfqDs-

mod.so ELF shared object file.
The loader will rps_add_root_object every root object of given idroot.
@@TODO: improve

4.1 The textual data format of REFPERSYS

Each space file of idspace starts with a prologue whose syntax is in figure

space-prologue ← {
"format": "RefPerSysFormat2019A" mandatory format id
"spaceid": idspace the id of the current space
"nbobjects": number-of-objects
}

Figure 8: JSON syntax of the prologue of space idspace

then each object content of some given oid is preceded by a comment like
//+oboid, for example an object of oid _3fzIPzNlWFV01GGQSt starts with
a comment //+ob_3fzIPzNlWFV01GGQSt line. The following object content is de-
scribed in figure 11 below.

@@TODO: review and improve ! We use a JSON format to persist our state.
Our immutable values could easily be represented in textual syntax, for example a set
of three objects of objids _0iaOiLq4pj20097DNb, _1R4TeqlLvhS03o0mGN,
_7m9EMmdyQKU00euKwB might be represented as the following JSON object:

{ "vtyp" : set

"elem" : ["_0iaOiLq4pj20097DNb",

"_1R4TeqlLvhS03o0mGN",

"_7m9EMmdyQKU00euKwB"] }

4.2 EBNF Grammar of Data Format

The figure 9 gives the JSON syntax of scalar values or object references in persisted
state files. The figure 10 is @INCOMPLETE@ and gives the JSON syntax of com-
posite values in persisted state files. The figure 11 gives the JSON syntax of object
contents inside space files.

The syntax of object contents is given in figure 11. The payload-kind there is
either some C identifier (if it starts with a letter: A . . .Z or a . . .z) or some objid (if it

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 31

http://man7.org/linux/man-pages/man3/dlopen.3.html
http://json.org

REFPERSYS high-level goals and design ideas

value ← int tagged integers
| float double precision floating point numbers
| string string of Unicode characters enclosed in double quotes
| object reference to mutable object with a globally unique objid
| set set of ordered unique objects
| tuple set of ordered (and possibly duplicate) objects
| closure function closing over an environment of values

int ← α, a 63-bit integer represented as an JSON number type
α ∈ Z,
−262 ≤ α ≤ 262 − 1

float ← floating-point-number, an IEEE 754 double, with a dot
string ← "α", a UTF-8 string represented as an JSON string type

| { "string": σ } when string σ looks like an objid
object ← _α, a Base-62 number prefixed with an underscore

Figure 9: JSON syntax of scalar values and object references

starts with an underscore _ ...). When it is some C identifier ident, an extern "C"

function (of signature rpsldpysig_t, defined in file refpersys.hh) named
rpsldpy_ident is found by dlsym(3) tehn invoked at load time. When it
is some objid objid, the rpsldpyobjid function is called. For example, class
objects have "payload": "class" as a JSON field in their state file, so are
loaded by calling rpsldpy_class. If (later) we would have "payload":

"_2j66FFjmS7n03HNNBn", then rpsldpy_2j66FFjmS7n03HNNBn should
be called.

The JSON representation of payloads vary. The figure 12 explains class related
payload.

The figure 13 gives the format of mutable set of objects payload. The "setob":
array might be empty.

The figure ?? gives the format of mutable vector of objects payload. The
"vectob": array might be empty. Some components could be null.

5 Metaprogramming in REFPERSYS

Metaprogramming, that is generation of “program” text files (e.g. of C++ code,
JavaScript code) is an important insight of REFPERSYS. Generation of such C++
files is inspired by [Starynkevitch-DSL2011] and the code chunks there.

A code chunk is a REFPERSYS object, of class code_chunk (of oid _3rXxMck40kz03RxRLM,
which is conceptually a mix of strings and holes or metavariables expanded into fur-

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 32

http://man7.org/linux/man-pages/man3/dlsym.3.html

REFPERSYS high-level goals and design ideas

set ← {
"vtype": "set",
"elem": [ω1, ω2, ω3, ...]
}
where the ωi are objects represented by objid-s

tuple ← {
"vtype": "tuple",
"comp": [ω1, ω2, ω3, ...]
where the ωi are objects represented by objid-s

closure ← {
"vtype": "closure"
"fn": ωfun the object giving a function
"env": [v1, v2, ...]

where the vi are JSON for closed values.

Figure 10: JSON syntax of composite values

ther code (by a machinery to be defined later, and hopefully to be generated with
some code chunks).

@@TODO: complete, explain and improve !

6 The primordial Read-Eval-Print-Loop of REFPERSYS

In commits around b986354245ee38db24 (November 2020), a GNU readline-
based Read-Eval-Print-Loop of REFPERSYS is developed, in the -still handwritten-
C++ file repl_rps.cc.

That initial REPL language should be capable of calling most of the public C++
functions (in our C++ file refpersys.hh) creating objects and values and modi-
fying them.

Auto-completion (in particular of existing names, and of exiting oids) is practi-
cally essential. This is why GNU readline is needed.

Given the lack of popularity of Lisp syntax in 2020 or 2021, the syntax of the
REPL language should be closer to JavaScript or to Python, even if the semantics of
REFPERSYS is heavily Lisp-inspired. See markup file doc/repl.md for details.

The lexer C++ routine rps_repl_lexer in our C++ file repl_rps.cc is
returning (for each lexical token) a pair of values. For example, an integer like -
23 or 0xffff is lexed as a pair int, -23 or int, 65535 respectively, where
int is a primordial REFPERSYS object (actually a REFPERSYS class, of oid
_2A2mrPpR3Qf03p6o5b). An existing object ω (given by its name, or by its oid)
is lexed as a pair object,ω. So int would be lexed as the pair object,int. A

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 33

https://github.com/RefPerSys/RefPerSys/blob/master/doc/repl.md

REFPERSYS high-level goals and design ideas

object-content ← {
"oid": oid, the string oid of the current object
"mtime": modtimeoid, its modification time
"class": class-oidoid, the oid of its class

["payload": payload-kind] optional payload kind
["comps": [value . . .],] optional components
["attrs": [attr-entry . . .],] optional attributes

@@@ incomplete @@@
}

attr-entry ← {
"at": object the oid of the attribute key
"va": value the corresponding attribute value

}

Figure 11: JSON syntax of object contents inside space files

class-payload :
"payload": "class",
"class_super": object, the oid of the superclass
"class_methodict": [method-entry . . .] method dictionnary

method-entry ← {
"methosel": oid the oid of the method selector
"methclos": closure the corresponding method closure
}

Figure 12: JSON syntax of class payload

new (unknown) name σ would be lexed as symbol,string σ, e.g. some unknown
foo would be lexed as symbol, "foo". Delimiters δ are kept in the global
repl_delim string dictionary (of oid _627ngdqrVfF020ugC5) -associating
strings like "(" to objects ωδ of class repl_delimiter- and lexed as a pair
repl_delimiter, ωδ.

7 The Web interface of REFPERSYS

In commits around 6d44cba00aa9b0a51 (May 2021) a Web interface is worked
upon (but buggy). You might run the ./refpersys -AWEB,REPL -W. (or
maybe just ./refpersys -W.) shell command and browse the localhost:9090
URL. The file webroot/index.html.rps is then served, and hopefully should
be template-expanded. Inspired by PHP, processing instructions like

<?refpersys suffix=’rpshtml’ action=’_2sl5Gjb7swO04EcMqf’ rps_json=’{"foo":1}’?>

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 34

http://localhost:9090

REFPERSYS high-level goals and design ideas

set-objects-payload :
"payload": "setob",
"setob": [oid . . .] sorted oids of elements

Figure 13: JSON syntax of mutable set of objects payload

vector-objects-payload :
"payload": "vectob",
"vectob": [oid . . .] sorted oids of elements

Figure 14: JSON syntax of mutable vector of objects payload

should be expanded by closure applications74. However, such processing instructions
should be on one single line (for example in file webroot/index.html.rps).

The advantage of a Web interface is at first to be able to generate and use HTML5,
and hopefully to generate web forms.

In May 2021 the refpersys program should not be used as a web server acces-
sible to outside, there are cybersecurity concerns. It could in a month be run on some
isolated laptop to hopefully make a tiny demo. With websockets, some JavaScript
code could be generated and running in the web browser, in parallel of the agenda
mechanism running inside refpersys process. This has to be implemented, hope-
fully with generated C++ code which would generate JavaScript code and send it to
web browser, which would use websockets to communicate asynchronously with the
refpersys process.

At the initial stage, we aim primarily to allow the user to enter C++ code for a
specific plugin, and to display the details for a selected object.

In the case of the former (entering C++ code), we would require to take advantage
of Javascript code editing plugin, such as that provided by codemirror.net. We
would need to add the codemirror.js file to the webroot/js/ directory, and
include it from our index.html.rps file. We would then create a textarea in our
index HTML file, and apply the codemirror API on it. We would also require an
HTTP POST endpoint in the RefPerSys web server that can process the plugin code
received by it.

Handling of HTTP requests is done with the help of libonion75.

74In this example, the applied closure has as connective the object of oid
_2sl5Gjb7swO04EcMqf. See our C++ function rps_serve_onion_expanded_stream in
file httpweb_rps.cc for details.

75an HTTP server open source library from coralbits.com/static/onion/

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 35

http://codemirror.net
https://coralbits.com/static/onion/

REFPERSYS high-level goals and design ideas

Glossary

Artificial General Intelligence Artificial general intelligence (AGI) refers to the
specific capacity of a machine to learn and understand any intellectual task
that can be performed by a human being. It is the primary goal of some artifi-
cial intelligence research, and is sometimes referred to as “strong AI” or “full
AI” . 1

metaknowledge Metaknowedge is knowledge about knowledge, and is an inclusive
term spanning several disciplines. Bibliography, the academic study of books,
and epistemology, the philosophical study of knowledge, are examples of meta-
knowledge. Even the tagging of documents could be considered as metaknowl-
edge. In AGI, metaknowledge refers to the knowledge about knowledge-based
systems. A declarative system might be guided by metarules, that is “expert
system” rules to compile or interpret other rules (maybe themselves). . 2

Reflection Reflection is (according to Wikipedia) “the ability of a process to ex-
amine, introspect, and modify its own structure and behavior”, and related to
Self-reflection, the capacity of humans (and hopefully of artificial cognitive
systems, like REFPERSYS should become) “to exercise introspection and to
attempt to learn more about their fundamental nature and essence”. . 2

DRAFT fb17387fbbb7e200 on 2021-May-17 Page 36

https://en.wikipedia.org/wiki/Artificial_general_intelligence
https://en.wikipedia.org/wiki/Metaknowledge
https://en.wikipedia.org/wiki/Reflection_(computer_programming)
https://en.wikipedia.org/wiki/Self-reflection

Index
A
abstract syntax tree, 14
agenda, 12
AST, 14

E
evolution

Darwinian, 2

F
free software, 2

G
genuine

value, 18

I
IDE, 15
infrastructure, 2
integrated development environment, 15

M
metaprogramming, 14

O
objid, 12

P
payload, 11, 17, 25

Q
quasi-value, 11, 17, 25

R
REFPERSYS, 1
rps_manifest.json, 30

S
SOFTWARE HERITAGE, 2
string, 21

T
tree

abstract syntax, 14
tuple, 20

V
value, 11

37

	Social Necessity of AGI Systems with Long Term Development
	RefPerSys ambitions and goals
	RefPerSys core idea[l]?s
	RefPerSys strange development cycle
	RefPerSys persistent heap
	Agenda and multi-threading in RefPerSys
	Metaprogramming and introspection in RefPerSys

	The data and object models of RefPerSys
	how data should be processed in RefPerSys
	data at the low and high levels
	values and quasi-values
	implementation details

	immutable values
	immutable scalar values
	immutable composite values

	mutable objects
	objects as frame-like data
	concrete examples of objects
	object payloads

	File naming
	Building refpersys executable
	RefPerSys workflow
	the RefPerSys object model
	RefPerSys inheritance graph
	RefPerSys message sending

	Persistence in RefPerSys
	The textual data format of RefPerSys
	EBNF Grammar of Data Format

	Metaprogramming in RefPerSys
	The primordial Read-Eval-Print-Loop of RefPerSys
	The Web interface of RefPerSys

