
Using MELT to improve or explore
your GCC-compiled source code

Basile STARYNKEVITCH
basile@starynkevitch.net (or basile.starynkevitch@cea.fr)

CEA, LIST (Software Reliability Lab)

CEA/DRT NanoInnov bat962 PC174 91191 GIF/YVETTE CEDEX, France

April 16, 2012

Abstract

This paper introduces the MELT framework and domain-specific language to extend
the GCC compiler. It explains the major internal representations (Gimple, Tree-s, . . . )
and the overall organization of GCC. It shows the major features of MELT and illus-
trates why extending and customizing the GCC compiler using MELT is useful (for
instance, to use GPGPUs thru OPENCL). It gives some concrete advices and guide-
lines for development of such extensions with MELT.

Keywords: compilation, GCC, domain-specific language, High-Performance Com-
puting, GPGPU, OpenCL, MELT, Gimple.

1

mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr


1 introduction to MELT

1.1 GCC and MELT

MELT [8, 9] (see http://gcc-melt.org/ for code and documentation) is a high-
level domain specific language1 to extend or customize the GCC compiler. GCC (see
http://gcc.gnu.org for more) is the major free software compiler for many
languages (C, C++, Ada, Fortran, Go, Objective C . . . ), target processors (x86, ARM,
Sparc, MIPS, PowerPC, . . . ) and systems (Linux, AIX, Android, . . . ).

The GCC compiler is a large legacy software (with more than 5 millions source
lines 2, which provides (notably in its 4.6 release of march 2011, and its 4.7 release
of march 2012) a plugin machinery to extend it. But coding plugins for GCC in plain
C is quite painful (because C is not a language specially suited for symbolic process-
ing, like the one happening inside compilers). MELT is a domain specific language
designed to ease the development of specific GCC extensions, for tasks aiming spe-
cific applications or libraries like: specialized warnings, specific optimizations, coding
rules validation etc.

A GCC compilation reads the user source code, then transforms it in specific GCC

internal representations, notably Tree-s (for declarations and operands) and Gimple-
s (for instructions). The bulk of an optimizing GCC compilation is made of more
than 250 GCC passes operating on its internal representations. GCC uses many inter-
nal representations, notably Gimple-s (“normalized” elementary abstract instructions,
representing elementary steps of the compiled code, such as the addition of a tempo-
rary “variable” with a constant going into another temporary) and Tree-s (elementary
abstract syntax trees, notably operands of Gimple-s, e.g. temprary, local or global
variables, formals and constants).

MELT can be used to take advantage of GCC powerful representations and process-
ing by customizing it suitably to the (advanced) user’s needs. It is implemented as
a “meta”-plugin for GCC, which generates C code operating on GCC internal repre-
sentations, then compiles that generated C into MELT modules and dynamically loads
these modules. MELT can be executed on GNU/LINUX systems3 having a GCC com-
piler supporting plugins.

Working inside GCC enables accesss to the internal representations of the compiler.
This has several benefits: it is more precise than textual based tools (for instance, it
is quite easy to find all functions with two formal double arguments without requiring
their definition’s signature to fit on a single line); since it is working on some cuirrent
internal representations in the compiler, it can profit of prior work already done by the
compiler (parsing -for various source languages-, previous optimization and inlining

1The MELT implementation is free software (GPLv3+ licensed) available from http://
gcc-melt.org/ as a plugin for GCC (4.6, 4.7 or better).

2Measuring the source code size of GCC is already a challenge. Some tools may give nearly 10
millions lines of source code lines as the computed code size of the same version of GCC.

3MELT should be easily ported to any operating system providing the POSIX dlopen and dlsym
functions for loading dynamic shared libraries, and supporting GCC plugins.
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1 void matmul ( i n t n , double∗m, double ∗a , double ∗b )
{

3 f o r ( i n t i =0 ; i<n ; i ++)
f o r ( i n t j =0 ; j<n ; j ++) {

5 double s = 0 . 0 ;
f o r ( i n t k =0; k<n ; k ++)

7 s += a [ i ∗n + k ] ∗ b [ k∗n + j ] ;
m[ i ∗n + j ] = s ;

9 }

Figure 1: matrix multiplication matmul.c

passes) and could improve its future work (remaining optimization or code generation
passes).

1.2 A glimpse into Gimple

Let’s consider the classical square matrix multiplication code in C, with each matrix
represented by an array of double precision IEE754 numbers. The C source code is
given by figure 1 (and is an obvious candidate to use the GPU, for large enough matrix
size n). From the compiler’s point of view, this code might not be parallelizable, e.g.
when m and a matrixes are physically overlapping in memory, and we should declare
the formals as double* restrict m etc to tell the compiler that they cannot overlap
or alias.

This simple code is transformed a lot inside the GCC compiler. Very quickly, it gets
“gimplified”, that is transformed into Gimple instructions. To obtain a textual dump
of internal representations after most passes of GCC, invoke it as gcc-4.7 -std=c99

-O2 -Wall -fverbose-asm -fdump-tree-all -c matmul.c; this gives a lot of (ar-
bitrarily4 numbered) dump files, including matmul.c.004t.gimple figure 2, which
shows that the Gimple form contains much more elementary instructions, and many
temporary variables like e.g. D.1603; the compiler introduces these to break com-
plex instructions into simpler operations. Control flow operations are broken up into
many jump labels e.g. <D.1591> and elementary tests with goto-s.

After “gimplification”, many other GCC optimization passes transform that high-
level Gimple representation into lower-level Gimple/SSA (for Static Single Assign-
ment). This is a form in which every variable is assigned once (so can be understood
as defined once with a sort-of equality, so is “simpler” to handle thru formal meth-
ods). For instance, our matrix multiplication is later optimized into the dump file
matmul.c.086t.phiopt2 of 91 lines, including figure 3, which illustrates that
the Gimple/SSA form uses several SSA versions (e.g. j 33 and j 44) of the same Gim-
ple variable (here j). When a basic block (like <bb 7> of figure 3) is reachable from
several defining assignments (in different blocks) for a variable, a Φ [function] assign-

4The numbers in dump file names are unique, but sadly don’t order these dump files in chronological
executions of passes.
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matmul (int n,
double * m, double * a, double * b)

{
int D.1595;
int D.1596;
long unsigned int D.1597;
long unsigned int D.1598;
double * D.1599;
double D.1600;
int D.1601;
int D.1602;
long unsigned int D.1603;
long unsigned int D.1604;
double * D.1605;
double D.1606;
double D.1607;
int D.1608;
long unsigned int D.1609;
long unsigned int D.1610;
double * D.1611;
{ int i;

i = 0;
goto <D.1592>;
<D.1591>:
{ int j;

j = 0;
goto <D.1589>;
<D.1588>:
{ double s;

s = 0.0;
{ int k;

k = 0;
goto <D.1586>;
<D.1585>:
D.1595 = i * n;
D.1596 = D.1595 + k;
D.1597 = (long unsigned int) D.1596;
D.1598 = D.1597 * 8;

D.1599 = a + D.1598;
D.1600 = *D.1599;
D.1601 = k * n;
D.1602 = D.1601 + j;
D.1603 = (long unsigned int) D.1602;
D.1604 = D.1603 * 8;
D.1605 = b + D.1604;
D.1606 = *D.1605;
D.1607 = D.1600 * D.1606;
s = D.1607 + s;
k = k + 1;
<D.1586>:
if (k < n) goto <D.1585>;
else goto <D.1587>;
<D.1587>:

}
D.1595 = i * n;
D.1608 = D.1595 + j;
D.1609 = (long unsigned int) D.1608;
D.1610 = D.1609 * 8;
D.1611 = m + D.1610;

*D.1611 = s;
}
j = j + 1;
<D.1589>:
if (j < n) goto <D.1588>;
else goto <D.1590>;
<D.1590>:

}
i = i + 1;
<D.1592>:
if (i < n) goto <D.1591>;
else goto <D.1593>;
<D.1593>:

}
}

Figure 2: gimplification of matrix multiplication matmul.c.004t.gimple

ment statement explicits that fact by “merging” the several origins of that variable’s
value, so i 41 = PHI<i 34(6), 0(2) means that the versioned SSA name i41 gets its
value either from i34 computed in <bb 6> or from 0 when coming from <bb 2>.

Notice that coding the same algorithm in the different programming languages un-
derstood by GCC produces very similar Gimple/SSA forms inside the GCC compiler,
even when using high-level C++11 constructs like nested std::vector or std::valarray
templates, std::for each application, and <functional> standard header with anony-
mous functions; the standard C++11 library is nicely optimized by GCC, but that
library is still implemented thru usual C++11 constructs.

1.3 MELT features

MELT is a high-level domain specific language designed to ease the extension of GCC

for customization purposes. It is implemented in a free-licensed (GPLv3) GCC plugin
(and MELT infrastructure), has the following features:

• The MELT language has a Lisp-like syntax and design : every MELT phrase is
an expression producing some result[s]. Every expression (called S-expr) is in
parenthesis, starting with the operator or keyword, and followed by operands.
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<bb 3>:
# s_51 = PHI <s_25(3), 0.0(5)>
# k_52 = PHI <k_26(3), 0(5)>
D.1595_10 = i_41 * n_6(D);
D.1596_11 = D.1595_10 + k_52;
D.1597_12 = (long unsigned int) D.1596_11;
D.1598_13 = D.1597_12 * 8;
D.1599_15 = a_14(D) + D.1598_13;
D.1600_16 = *D.1599_15;
D.1601_17 = k_52 * n_6(D);
D.1602_18 = D.1601_17 + j_44;
D.1603_19 = (long unsigned int) D.1602_18;
D.1604_20 = D.1603_19 * 8;
D.1605_22 = b_21(D) + D.1604_20;
D.1606_23 = *D.1605_22;
D.1607_24 = D.1600_16 * D.1606_23;
s_25 = D.1607_24 + s_51;
k_26 = k_52 + 1;
if (n_6(D) > k_26)

goto <bb 3>;
else

goto <bb 4>;

<bb 4>:
# s_40 = PHI <s_25(3)>
D.1595_27 = i_41 * n_6(D);
D.1608_28 = D.1595_27 + j_44;

D.1609_29 = (long unsigned int) D.1608_28;
D.1610_30 = D.1609_29 * 8;
D.1611_32 = m_31(D) + D.1610_30;

*D.1611_32 = s_40;
j_33 = j_44 + 1;
if (n_6(D) > j_33)

goto <bb 5>;
else

goto <bb 6>;

<bb 5>:
# j_44 = PHI <j_33(4), 0(7)>
goto <bb 3>;

<bb 6>:
i_34 = i_41 + 1;
if (n_6(D) > i_34)

goto <bb 7>;
else

goto <bb 8>;

<bb 7>:
# i_41 = PHI <i_34(6), 0(2)>
goto <bb 5>;

Figure 3: excerpt of matmul.c.086t.phiopt2 - Gimple/SSA form

Case in identifiers (called symbols, as in Lisp or Scheme) is not significant.
Identifiers may contain non-letter characters. So the sum of 2 and x is expressed
as (+i x 2) where +i is a symbol denoting the addition (of two raw integers)
primitive. Parenthesis are highly significant; every non-trivial MELT expression
is parenthesized, except some traditional syntactic sugar 5.

• MELT is translated to C code (thru a translator itself implemented in MELT); that
generated C code6 may then be compiled into a shared object on the fly, then
dynamically loaded with dlopen, all during the same single execution of GCC

augmented by MELT. This enables MELT code to contain some small C code
chunks which can call external libraries, or low-level GCC internal functions.

• MELT deals with “high-level” dynamically typed values (objects, lists, closures,
tuples, boxed numbers, boxed Gimple-s, etc...) and raw GCC stuff (e.g. raw
long, raw Gimple, raw Tree-s, raw basic blocks), and enable reflective[6] and
functional programming styles.

• a runtime (implemented as the melt.so GCC plugin) provides many utilities,
notably an efficient MELT generational copying garbage collector (tuned for
frequent allocation of many temporary MELT values), built above the GCC mark

5The MELT reader parses ’1 exactly as (quote 1), and ?(cstring same "fflush") exactly as
(question (cstring same "fflush")), etc.

6The GCC compiler (version 4.7) is itself in transition, aiming to be progressively and partly rewrit-
ten in C++ code. MELT actually is translated to the common subset of C and C++ code which is
acceptable inside GCC plugins. If and when GCC would be re-written in idiomatic C++ code, the
MELT translator would be adapted to that.

5



and sweep garbage collector (which is quite primitive, and expects most Gcc
stuff to live quite a long time), and a dynamic loader for MELT modules.

• the MELT system has an extensible pattern matching framework: extensions
written in MELT use many patterns and can easily filter the internal represen-
tions of GCC (notably Gimple and Tree-s) thru a high-level declarative syntax.

• the MELT implementation is layered: the runtime is used by all the MELT sys-
tem; the translator parses MELT code (from file, memory, or even sockets) into
s-expressions, which are then macro-expanded, normalized, generated an inter-
nal representation of the emitted C code, at last pretty-printed to generated C
files, compiled into a shared object, dynamically loaded. Each layer is quite
modular and can be extended by an advanced user. For instance, user-specific
language constructs can be provided (thru the macro machinery).

• the MELT system is able to deal with asynchronous textual messages7 (in MELT

S-expr syntax); this enables passes coded in MELT to communicate with ex-
ternal processes (e.g. graphical interfaces, web servers, ...) thru asynchronous
textual protocols, in messages which might be handled at nearly any time inside
passes provided in MELT (but not inside existing GCC passes, which would not
react to them).

The MELT plugin release 0.9.5 (available on http://gcc-melt.org/, free
software, GPLV3+ licensed, of april 2012) for GCC 4.7 has a MELT runtime of 23KLOC

(thousands of line of source code, counted with wc), including nearly 6KLOC of MELT

generated code, the MELT (to C or C++) translator has 46KLOC (giving 1629KLOC

of generated C code, which is also distributed), and nearly 8KLOC of MELT code
providing a foundation for user provided MELT extensions.

7Since version 0.9.5 of april 2012 of the MELT plugin for GCC 4.7
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2 MELT usage for HPC customization

HPC (High-Performance Computing) should become a preferred domain for compiler
customization, and MELT can be the right tool for that.

2.1 Traversing GCC internal representations with MELT

Working inside the GCC compiler enables accessing the exact internal representations
used by the compiler. In particular, MELT permits to navigate on the code, as worked
on by GCC, e.g. after function inlining.

To give a simple toy example (algorithm 1) 8 figure 4, one might want to catch
all calls like fflush(NULL) (used to flush all <stdio.h> files) inside every function
whose name starts with bar and do that search after inlining. This simple query cannot
be handled by simple textual tools (like perl or awk, etc...) because it needs to know
what functions are inlined by GCC (and inlining decisions are not easily predictable).
The relevant internal GCC representation is Gimple/SSA.

for each function cfun do
if cfun’s name start with bar then

for each basic block bb of cfun do
for each gimple g inside bb do

if g is a call to fflush with one argument, constant 0 then
inform the user of the location of g

end
end

end
end

end
Algorithm 1: finding fflush(NULL) inside any bar function

The MELT code of figure 4 illustrates several traits of the MELT programming
language. Pattern matching is done with match expressions (beginning line 3 and
10), containing matching clauses starting with patterns (prefixed with a question mark
?, e.g. ? for the wildcard pattern). Iterative constructs (beginning line 1, 6 and
8), conventionally named with each or with in their names, have input arguments
[perhaps an empty list () if none is required] followed by local formals. So the
eachgimple in basicblock expression starting line 8 can be understood as: iterate
inside the raw basic block bb, and for each Gimple inside, bind it to local variable
g whose type :gimple, i.e. raw Gimple stuff of GCC, then evaluate the body sub-
expression[s] (here, a match on g) from lines 10 to 16.

This example illustrates the power of pattern matching, when analyzing (or trans-
forming) GCC internal Gimple representations : filtering internal code representa-

8This is ex05 of melt-examples on GitHub.
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1 ( w i t h c f u n d e c l ( )
( : t r e e c f u n d e c l )

3 ( match c f u n d e c l
( ? ( t r e e f u n c t i o n d e c l n a m e d

5 ? ( c s t r i n g p r e f i x e d ” b a r ” ) ? )
( e a c h b b c u r r e n t f u n ( )

7 ( : b a s i c b l o c k bb )
( e a c h g i m p l e i n b a s i c b l o c k ( bb )

9 ( : g imple g )
( match g

11 ( ? ( g i m p l e c a l l 1 ?
? ( t r e e f u n c t i o n d e c l n a m e d

13 ? ( c s t r i n g s a m e ” f f l u s h ” ) ? )
? ( t r e e i n t e g e r c s t 0 ) )

15 ( i n f o r m a t g i m p l e g ” found f f l u s h (NULL) ” ) )
( ? ( ) ) ) ) ) )

17 ( ? ( ) ) ) )

Figure 4: MELT example - seeking fflush(NULL) after inlining inside functions bar*

tion is an essential operation when working inside a compiler. The match of line
10 of figure 4 filter a given gimple instruction g to find if it is a call to fflush

with a constant 0 argument (since NULL is macro expanded to e.g. (void*)0). it
is filtered as a Gimple call instruction with one argument (with the gimple call 1

matcher) to a function, represented as a Tree in Gimple, whose declaration (matching
the tree function decl named matcher) refer to a name matching the sub-pattern
?(cstring same "flush"), filtering strings equal to the literal "flush". Actually,
this is not the most efficient way to find call to the standard fflush function; a more
clever way would be to filter all the functions declarations to find out and store the
Tree for that fflush and filter for it.

Pattern matching in MELT can also extract components from filtered data; hence a
pattern like :

?(gimple_assign_plus
?(tree_ssa_name ?var ?_ ?lvers ?_)
?(tree_ssa_name ?var ?_ ?rvers ?_)
?(tree_integer_cst ?rincr))

will filter all Gimple/SSA statements adding the same variable var (with two different
SSA versions: lvers on the left side, rvers on the first right side of the assignment)
to some integer constant rincr; the extracted pattern variables var lvers rvers

rincr are available inside the body of that matching clause. The pattern is non-linear,
since the same pattern variable ?var appears twice in it. When matching its second
occurrence (for the first right hand operand of the assignment), it should be compared
to the already found data.

2.2 Taming HPC parallelism with GRAPHITE and MELT

An important issue in HPC is to improve parallel computation. This is a very am-
bitious and a very long-term goal. Within the GCC compiler, a lot of efforts have
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been invested for that goal, notably thru the GRAPHITE project [10, 11], which uses
polyhedral techniques to detect parellelization opportunities in Gimple.

Using GPGPU for the highly parallel and data regular parts of the computation is
possible, notably with the CUDA proprietary language and with the OPENCL indus-
try standard [5]. Both are specialized C-like dialects and runtime infrastructures de-
signed to take advantage of GPGPUs. However, they require recoding the crucial parts
(i.e. numerical kernels) of an HPC application in another language (e.g. OPENCL or
CUDA)

Experimental code has been developed to translate Gimple to OpenCL using the
GRAPHITE infrastructure within the GRAPHITE-OPENCL project [1]. However, all
GPGPU related effort within GRAPHITE is (or was) still highly experimental, so is
not yet integrated inside the released GCC compiler. Since MELT is targeting official
GCC releases9, it is not possible to use this experimental GRAPHITE-OPENCL work
from MELT. And the GRAPHITE component of released GCC compilers does not even
provide any plugin hooks, so cannot be easily extended (either in MELT or thru any
GCC plugin coded in C). Because MELT is extending gcc-4.7 as released, it can only
use the public interfaces provided by GCC.

However, the graphite pass of GCC 4.7 is able to detect parallelizable loops, and
this detection can be used by MELT extensions. MELT knows about GCC loop stuff
and provides a primitive loop can be parallel to query if GRAPHITE has detected if
a given loop is parallelizable. Once such a loop is found, a MELT pass has to recom-
pute some informations that GRAPHITE has computed for its own internal purpose,
without providing an API to query it. In particular, each parallelizable loop has some
induction variable, but GRAPHITE is not publishing it, so MELT has to recompute it.

Hence, re-doing in MELT what has been done in experimental prototypes related to
GCC is not easy, because the released GCC compilers does not provide the interface
to do that, so a significant amount of code has to be re-written (or we need to wait
until some future release of GCC provides the relevant plugin hooks or public API, or
gets a newer GRAPHITE merged inside.). And merging into MELT the experimental
GRAPHITE is as difficult as merging it into the GCC trunk10 (we leave that task to the
developers of GRAPHITE). Furthermore, the experimental MELT branch is very often
merged with the current GCC trunk.

Hence, generating of simple OPENCL variant from the internal Gimple is not yet
achieved (in april 2012) within the MELT project. And when tentatively running, it
would only translate very simple cases of parellisable algorithms. A production-level
OPENCL generator would have to be tightly integrated inside GRAPHITE.

A practical issue, when generating OPENCL, is to estimate the size of the arrays
(and the number of iterations inside loops). In very simple cases (e.g. a loop with

9The official GCC releases are evolving significantly fast enough, so integrating experimental
Graphite work is not reasonable for a single person outside of the small Graphite developers’ commu-
nity, and integrating some of their code into GCC releases [i.e. the current trunk] is already a challenge
for Graphite people.

10The GCC trunk is the actively developed GCC branch, which will become the next release.
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a compile-time constant bound), GCC may already have such an estimate. In real
cases, even as simple as the trivial matrix multiplication of figure 1, determining the
bounds from the Gimple representation of Gimple code from figure 2 is not that sim-
ple. Concretely, running the matrix multiplication on the GPGU is worthwhile only
for a large enough (e.g. n > 200 perhaps) dimension of the matrix. The exact thresh-
old -which is highly system and machine specific- should probably be computed by
machine learning techniques [3].

Many other tools to take advantage of GPGPU exist. Some tools, in particular
STARPU [2], extend GCC with appropriate pragmas to ease integration with “codelets”
running on the GPGPU.

2.3 Why HPC needs GCC extensions and customizations?

High performance computing may profit from specific GCC extensions and customiza-
tions, like:

• navigation or refactoring tools for large scientific (legacy) code

• dynamically choosing an implementation of some classical numerical library
(e.g. a GPU or a CPU variant of LAPACK 11, etc..)

• application specific pragmas (or compiler builtins)

• customized optimizations, in particular when mathematical knowledge may sug-
gest them (e.g. replacing the addition of some matrix M with itself 12 by a scalar
multiplication by 2)

• “domain specific profiling” could be achieved by automatically inserting “pro-
filing instructions” (perhaps as simple as incrementing a profiling counter) within
the Gimple code

• etc . . .

The main insight is that some important HPC software could consider customizing
the GCC compiler for their own purposes, and MELT can be the right tool for such an
approach. However, extending GCC (even with MELT) has some human cost, because
the GCC internal representations are intrinsically complex : Gimple has 38 cases (of
which 14 are specific to OPENMP) listed in file gcc/gimple.def of GCC [see figure
5], and Tree has nearly 200 cases, listed in file gcc/tree.def [see figure 6]. A given
GCC compiled application is very likely to use the majority of these cases, which have
to be handled individually. Notice that some Tree cases cannot appear at Gimple/SSA
level (e.g. RETURN EXPR, which is rendered by a GIMPLE RETURN instruction)) while
others (like SSA NAME) are specific to Gimple/SSA.

11http://www.netlib.org/lapack
12While a good numerical scientist would probably never write code like M + M (where M is

some big matrix) himself, some preprocessing or macro-expansion could bring such occurrences, and
handling them inside the compiler can be worthwhile.
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/* GIMPLE_RETURN <RETVAL> represents return statements.

RETVAL is the value to return or NULL. If a value is returned it
must be accepted by is_gimple_operand. */

DEFGSCODE(GIMPLE_RETURN, "gimple_return", GSS_WITH_MEM_OPS)

/* GIMPLE_PHI <RESULT, ARG1, ..., ARGN> represents the PHI node

RESULT = PHI <ARG1, ..., ARGN>

RESULT is the SSA name created by this PHI node.

ARG1 ... ARGN are the arguments to the PHI node. N must be
exactly the same as the number of incoming edges to the basic block
holding the PHI node. Every argument is either an SSA name or a
tree node of class tcc_constant. */

DEFGSCODE(GIMPLE_PHI, "gimple_phi", GSS_PHI)

Figure 5: two cases of Gimple from gcc/gimple.def

/* All pointer-to-x types have code POINTER_TYPE.
The TREE_TYPE points to the node for the type pointed to. */

DEFTREECODE (POINTER_TYPE, "pointer_type", tcc_type, 0)

/* Contents are in TREE_REAL_CST field. */
DEFTREECODE (REAL_CST, "real_cst", tcc_constant, 0)

/* Pointer addition. The first operand is always a pointer and the
second operand is an integer of type sizetype. */

DEFTREECODE (POINTER_PLUS_EXPR, "pointer_plus_expr", tcc_binary, 2)

/* & in C. Value is the address at which the operand’s value resides.
Operand may have any mode. Result mode is Pmode. */

DEFTREECODE (ADDR_EXPR, "addr_expr", tcc_expression, 1)

/* RETURN. Evaluates operand 0, then returns from the current function.
Presumably that operand is an assignment that stores into the
RESULT_DECL that hold the value to be returned.
The operand may be null.
The type should be void and the value should be ignored. */

DEFTREECODE (RETURN_EXPR, "return_expr", tcc_statement, 1)

/* Variable references for SSA analysis. New SSA names are created every
time a variable is assigned a new value. The SSA builder uses SSA_NAME
nodes to implement SSA versioning. */

DEFTREECODE (SSA_NAME, "ssa_name", tcc_exceptional, 0)

Figure 6: some cases of Tree from gcc/tree.def
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3 Some hints and advice for taming GCC with MELT

Extending GCC is challenging, mostly because of the complexity of compiler tech-
nology (so extending other industrial strength free software compilers like OPEN64
or LLVM/CLANG would also be difficult).

Customizing GCC (with MELT) raises several issues:

• understanding the intricated GCC internal representations, including Gimple in-
structions (i.e. the gimple data) and Tree-s (tree pointers), but also gimple seq

(a sequence of gimple instructions), basic block (an elementary block of in-
structions, containing a gimple seq, entered only at its start, and jumping to
other basic blocks or returning to the caller function), edge (an arrow between
basic block-s, with GCC knowing each side of it), or even function-s or
cgraph-s. Furthermore, all these data types are not available at all times in
GCC (some passes are run when some data is not computed yet).

• understanding the numerous GCC internal passes (there are ≈ 250 of them!),
and what kind of new passes should be written, and where to insert them. There
are no obvious coding rules relating a pass appearing in the GCC source code,
to its name.

• understanding the MELT domain specific programming language and its inter-
face to GCC (if coding a GCC plugin in C, understanding the coding conventions
and GCC plugin interface to C is also challenging).

• choosing what pass[es] should be added into GCC; the pass manager (in function
init optimization passes from file gcc/passes.c of the GCC source code)
is organizing the passes into several kinds (see file gcc/tree-pass.h)

– GIMPLE PASS for “simple Gimple passes” working on one function at a
time;

– RTL PASS for back-end “Register Transfer Language” passes (which are
target-processor specific, so probably not relevant here);

– SIMPLE IPA PASS for “simple Inter-Procedural Analysis” passes;

– IPA PASS for full “Inter-Procedural analysis” passes.

Passes are described by struct opt pass data structures, containing the kind
and name of the passes, and some function pointers, notably the gate function
pointer (often null) which decides if the pass has to be executed, and the execute
function which does the real job of the pass.

A pass of a given kind can only be inserted near other passes of the same kind.

• choosing which GCC internal representations should be used; this choice also
depend of the considered pass; for instance, Gimple/SSA is not always available,
or on the contrary may be required before some pass.
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3.1 Choosing the right passes

The order and set of executed passes (within some given compilation by GCC) depend
upon the actual code compiled by GCC and also of the optimizations requested at com-
pilation time (e.g. is different with -O1 and with -O3). Passes whose name starts with
a letter can give dump files (a textual file dumping some internal representation han-
dled by the pass, e.g. the Gimple code). The GCC program option -fdump-tree-all

produces all the dump files; unfortunately the name (e.g. matmul.c.004t.gimple) of
the dump file is not very meaningful (because the contained number e.g. 004 is not a
chronological ordering of passes).

A possible way of understanding the concrete passes executed by GCC is to add
a MELT hook with the register pass execution hook function provided by MELT.
The registered closure gets the pass name and number and is invoked before each pass.

Most MELT extensions involve insertion of additional passes (coded in MELT).
Here are some few guidelines for choosing where to insert such passes:

• if your pass needs only Gimple instructions without control flow graph, consider
inserting it after the gimple pass.

• if your pass needs Gimple/SSA instructions, insert your pass after the ssa pass
at least.

• if your pass needs inlining to have been done, consider inserting it after the
phiopt pass

• if your pass requires GRAPHITE to have detected parallelizable loops, insert it
after graphite pass

• etc . . .

Choosing the right place to insert your pass is still a difficult issue, notably when
interprocedural optimizations are required (or are useful).

3.2 Using the available representations

GCC has a lot of internal data types and representations : the gengtype utility, which
generates13 marking routines for the GCC garbage collector, handles more than 1900
types with GTY annotations. So GCC has a lot more internal representations than just
tree-s and gimple-s.

MELT is in principle able to access any such GTY-ed data type: part of the MELT

runtime is generated, notably the layout of boxed values (e.g. boxed gimple or edge
13The GCC compiler has more than a dozen of specialized internal C code generators : gengtype

generating garbage collection marking routines; genattr generating attribute information in the back-
end from machine description; genautomata for pipeline hazards, etc. Most generators are not available
to plugins.
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values) and their low level C support code (e.g. for allocating such values, and for
copying or scanning them in the MELT garbage collector). Each GCC stuff known
to MELT is described in a C-type instance: so the loop GCC data is described in a
ctype loop descriptor (giving the :loop “keyword” to annote stuff of that type in
MELT code), etc. So adding a new C-type is a matter of providing its descriptor and
then regenerating all MELT generated code (inside the MELT branch).

The GCC compiler does not provide any direct mean to add specific data inside ex-
isting representations (like gimple, etc.). To associate their own data to such existing
representations, GCC plugins and MELT extension have to manage this association
outside of the internal representations. A convenient way is to keep in some hash-
table, keyed by GCC representations like gimple, tree, etc the association between
internal GCC representations and MELT (or GCC plugins’) extensions. Hence, every
C-type provides not only boxed values (so a boxed Tree is a MELT value containing
a tree pointer), but also homogeneous hash-tables: e.g. a map of Tree-s is an hash-
table, itself a MELT value, having tree-s as keys, and arbitrary non-null MELT values
associated to each of them.

With the Gimple/SSA representation, GCC manage also the “use-def” information:
when trssa is some raw tree of an SSA name from some Gimple/SSA instruction, the
walk use def chain depth first and walk use def chain breadth first MELT

primitives apply a given MELT closure to a given value and to every tree and gimple

defining (i.e. setting) or using the variable under trssa.
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4 Conclusion and future work

This paper should suggest developers of important scientific high performance com-
putation software to consider extending and customizing the GCC compiler suite for
their specific needs. This could in particular be useful to take advantage of GPGPUs
and other specialized hardware.

Diving into GCC is an intimidating experience (because of the complexity and size
of the gcc legacy softwware), but this paper gave some practical hints to make it easier.

Extending or customizing GCC has the decisive advantage of leveraging on the
powerful internal representations and transformations already provided by GCC. These
assets are the main reasons to build your extensions above GCC. In addition, extending
GCC is adequate when implementing custom optimizations or code transformations.

Future work on MELT (if compatible with available funding) may include inter-
facing additional GCC features, more OPENCL related extensions, a Web interface to
MELT, analysis to help drive energy-consumption related facilities.

High performance computing is a major potential application of compiler cus-
tomizations. MELT extensions should be “easily” prototyped to implment such spe-
cific enhancements.
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