
Static Code Analysis for Safer IoT Development

Basile STARYNKEVITCH - basile.starynkevitch@cea.fr

Commissariat à l’Énergie Atomique et aux énergies alternatives
CEA - LIST, LSL (Palaiseau, France)

October, 11th, 2018, Rome
commit 572de8b2a2437f60

This CHARIOT project has received funding from the European Union’s Horizon 2020 research and innovation

programme under the Grant Agreement No 780075.

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 1 / 21

mailto:basile.starynkevitch@cea.fr
http://chariotproject.eu/

Introduction

Overview

1 Introduction

2 Importance of source code

3 Simpler CHARIOT approach to static analysis

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 2 / 21

Introduction

Introduction

all opinions are only those of the author, Basile STARYNKEVITCH

https://xkcd.com/1425/

some tasks or goals look simple
but are not that simple....
some apparently very similar
tasks or goals are very difficult, or
impossible... (maybe intractable)
some very close tasks are even
provably impossible (undecidable)

NB: it should be ten, not five, years!

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 3 / 21

https://xkcd.com/1425/
https://en.wikipedia.org/wiki/Computational_complexity_theory#Intractability
https://en.wikipedia.org/wiki/Undecidable_problem

Introduction

we are unfit for {IoT, programming, project management, ...}

{

sub-image sources:

“brain image”: Wikimedia Human Brain

“brace”: rotated { from some computer font

“green arrow”: OpenClipart arrowgonext

“evolution”: 1234f.com image 59774943
by Monica Roa

Our (still prehistoric) brain is unfit for: IoT design, programming, computer
science & math, management of large projects... (but suitable -”optimized” by
evolution- for prehistoric hunting and gathering).
Miller’s law (1956): our working memory is limited to only 7±2 chunks

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 4 / 21

https://upload.wikimedia.org/wikipedia/commons/3/33/Human-brain.SVG
https://openclipart.org/detail/16964/arrowgonext
https://www.123rf.com/photo_59774943_stock-vector-human-evolution-computer-time-illustration.html

Introduction

my dynamic memory allocator : the best one ,

#include <stdlib.h>
#include <errno.h>
void* malloc(size_t siz) {

if (siz > 0)
errno = ENOMEM;

return NULL;
}

A joke for geeks :
it follows the letter, not the spirit, of the C11 (cf n1570 §7.22.3) and POSIX
standard[s], since it always fails by giving the null pointer.

NB. I probably could make a good allocator, but it would take me years of work. The
existing ones are enough for me (and probably you), but they are complex and make
trade-offs. Specifying some properties of malloc is easy, implementing a good enough
one is hard. Expliciting most “good” properties is nearly impossible.

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 5 / 21

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

Introduction

Tackling essential complexity with abstractions

Cf The mythical man-month : essays on Software Engineering by F. Brooks
(1975, 1995); includes No silver bullet.
Brooks’s law: Adding manpower to a late software project makes it later.

If 1 woman can make a baby in 9 months,
9 women won’t make a baby in 1 month.

even perfect program verification can only establish that a program meets
its specification.
the essence of building a program is in fact the debugging of the
specification

Heisenbugs. ⇒ The number of bugs tends to a non-zero asymptote.

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 6 / 21

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/No_Silver_Bullet
https://en.wikipedia.org/wiki/Heisenbug

Introduction

Leaky abstractions

Even with our abstractions, the complex reality of our systems or systems of
systems (e.g. IoT ones) don’t fit well in our brains.

The law of leaky abstractions (Joel Spolsky, 2002) :
All non-trivial abstractions, to some degree, are leaky;

or, (for G.Schwarz) “incomplete”, or (for A.Zwinkay) “unsuitable”
⇒ Abstractions fail. (our malloc example leaks a lot!)

so ISO9001 QA is unsuitable for software development; cf “Joel Test”
(so the software industry: Google, Facebook, MicroSoft, . . . don’t follow ISO9001).

⇒ state-of-the-art static source code analysis tools are not very
effective in detecting security vulnerabilities (alone)
(Goseva-Popstojanova & Perhinschi 2015)

But these tools can be helpful (even when they are simple)
Complex static analysis tools need a detailed and formalized specification
(and check difficult properties). Such specifications are hard to write.

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 7 / 21

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
http://beza1e1.tuxen.de/leaky_abstractions.html
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/

Introduction

Trade-off in static source code analysis

There is a trade-off when doing static source code 1 analysis:

strong formal-methods based static analysis (cf VESSEDIA) à la
Frama-C :

1 do a “sound” analysis: may sometimes give strong guarantees on the
proven properties (usually simple ones, or very specific ones) of the IoT
software.

2 sometimes, the analysis does not concludes anything, or times out
3 requires a strong formalization of the specifications
4 so is costly to use (additional skills required)

weak heuristical based static analysis (the CHARIOT approach) - like
Coverity or Clang-analyzer

1 unsound analysis - no promises at all (could say “ok” for a buggy program,
or “not-ok” for a good program) and no guarantee

2 less (or incomplete, or missing) formalization of specifications
3 perhaps simpler to use (but weaker)
4 won’t always work (but might require less skills from the developer)

1All static analysis in this talk is on source code!
Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 8 / 21

Introduction

strong static analysis

The VESSEDIA way:

significant effort on formal specifications (and deeply understanding the
real-world problem). The “source code” is not only C, but also a
(mathematical) formalization of the specification (e.g. in ACSL).
strong guarantees on the proven properties of the software. Unit testing
can become useless. Whole-system test is still essential.
sound tool (when ok is given, the program “is” bug-free w.r.t. specification)

costly approach (e.g. >×30 “traditional software development”).
required additional skills (to formalize the specification)
add constraints to programmers (e.g. coding style forbidding malloc)

the analyzing tool (Frama-C code prover) might fail. Then we change the code or the
specifications, until the code is proven correct.

suitable (and often suggested by regulations, such as DO-178C) for life-critical IoT
systems

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 9 / 21

https://en.wikipedia.org/wiki/DO-178C

Introduction

weak static analysis

The simpler CHARIOT approach:
only very simple or trivial properties are detected. Unit testing is still
absolutely needed.
“cheaper” approach: less formalization on specifications
can be built above existing cross-compiler technology (GCC)
so less disruptive to use (e.g. just add cross-compiler options for some GCC plugin)

unsound tool (wrong negative: tool gives OK on buggy program)

only modest results can be expected (many false positives and missing alarms)

software failures should be acceptable and expected
still requires a “whole program” capable tool
suitable for non-critical IoT systems (but should be avoided for safety-critical IoT
systems)

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 10 / 21

Introduction

The halting problem and Rice’s theorem

The halting problem is the problem of determining, from a description of an
arbitrary computer program and an input, whether the program will finish
running (i.e., halt) or continue to run forever.

from Wikipedia

Rice’s theorem states that all non-trivial, semantic properties of programs
are undecidable.
⇒ There exists no automatic method that decides with generality non-trivial
questions on the behavior of computer programs.

from Wikipedia

The halting problem is provably unsolvable /
It is the essential limitation of static analysis

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 11 / 21

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Rice's_theorem

Importance of source code

Overview

1 Introduction

2 Importance of source code

3 Simpler CHARIOT approach to static analysis

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 12 / 21

Importance of source code

Source code - socially

The source code is the preferred form on which software developers
work.

Software development is a “social” activity.
We write source code for humans 2, not mostly for computers.

Source code may include building scripts (e.g. Makefile-s, shell scripts or tests)
Practical importance of version control e.g. git 3

2Perhaps just us next month!
3git was first developed by Linus Torvards in 2005.
Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 13 / 21

Importance of source code

Source code - examples

hand-written C source and header files (before preprocessing): *.c and *.h

build automation configuration: Makefile, etc...
generators for generated files, perhaps as simple as:
const char bismon_timestamp[]="Sun 30 Sep 2018 06:13:23 PM MEST";
const unsigned long bismon_timelong=1538324003L;
const char bismon_lastgitcommit[]=

"f157d8ecbdde start coding emit_jsstmt°basiclo_while";
const char bismon_lastgittag[]="heads/master";
const char bismon_checksum[]="8452084c28c0580f65a57f8b404f9bc7";
const char bismon_directory[]="/ssdhome/basile/bismon";
const char bismon_makefile[]="/ssdhome/basile/bismon/Makefile";

which is generated by a few lines (e.g. of some Makefile).

Practical importance of meta-programming: using or writing scripts or
programs emitting C code 4 (parser generators à la bison, glue generators à la SWIG,)

Most IoT projects are likely to have some generated C code in 2018!
Your vendor IDE might not be able to handle them. So use a real build automation tool like make, ninja....

4Or any other code consumed by a compiler or interpreter!
Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 14 / 21

Importance of source code

source code for your GCC compiler

Your GCC compiler (e.g. gcc 8.2 in october 2018, see gcc.gnu.org)
consumes C files (and many other languages: C++, Objective C, Fortran, Go, perhaps D)
and does not care if that “source” file is generated or not. It emits 5 object
code.

⇒ source code does not mean the same thing for compilers and for
developers.

The C compiler proper cc1 sees quite early preprocessed text (and have skipped
all your comments!).

5Actually, the cc1 emits assembler code, but gcc runs as after cc1.

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 15 / 21

http://gcc.gnu.org/

Importance of source code

Showing and sharing your source code

in a formal process (e.g. avionics): the (proprietary) source code is “audited”
and “evaluated” by some external entity (CC costly CC).
informally, by some distant colleague (outside of your team) - peer reviews
informally, code reviews in your team (biased, since they know your code)

open source / free software communities (reusability of code chunks)

Linus’ law: given enough eyeballs, all bugs are shallow (1999, mostly true
today).
⇒ source code analysis is often an aid to code reviewers or developers

take-away message:
showing your source code increases its value and quality
even for pre-α quality prototype code;

hiding source code should be “discouraged” and is ineffective and will become
“counter-productive”.
When subcontracting software development, request the source code!

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 16 / 21

Importance of source code

IoT industry not used to show source code

That will cost thousands of human lives and billions of C

Hiding source code is a bad practice that should change.

Static source code analysis is an aid to external code reviewers and
developers (might help to avoid “code smells”)

The IoT industry 6 should get used to show the source code!

Q: How many human lives (killed by bugs), how many billions C of loss, are
needed to make that generally happen and become standard practice?

Human language -e.g. in comments- matter too! future DECODER H2020 project mixing natural
language processing, machine learning, and static source code analysis

6Actually, all software intensive industries!
Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 17 / 21

Simpler CHARIOT approach to static analysis

Overview

1 Introduction

2 Importance of source code

3 Simpler CHARIOT approach to static analysis

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 18 / 21

Simpler CHARIOT approach to static analysis

Simpler CHARIOT approach to static analysis

A “simpler” approach, because formal methods expertise is not required (like
what VESSEDIA partners have and need).

Expected audience of the CHARIOT static analyzer, tentatively called bismon 7

a small team of developers (e.g. 2 to 10 persons) working on the same IoT
firmware. That team is trustful (and its members trust each other) and well
behaving (no malicious behavior).
a reasonably sized firmware project source code (e.g. less than 300 KLOC)

one (or a few) simple program properties to check (e.g. stack overflow)

the firmware developers are all using Linux and a recent GCC
cross-compiler (accepting GCC plugins) : GCC 8 (and soon GCC 9) 8 at least.
these developers have all configured their build system to use the same
(given) GCC plugin. The C++ code of that GCC plugin would be generated by bismon.

7A bad temporary name, please suggest constructively a better one.
8The version of GCC matters a lot and is important for plugins. All IoT developers use the

same GCC cross-compiler on their Linux machine.
Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 19 / 21

Simpler CHARIOT approach to static analysis

The bismon persistent monitor
Persistence : the monitor keep its data 9 (by loading it at start and dumping it before
exiting) from one run to the next one (Typically the monitor would run the whole day).

persistent
monitor

builderbrowser

IoT
source code

Bill

generated C++
GCC plugin

yoursite.com

static
analysis
expert

builderbrowser

IoT
source code

Alice

using metaprogramming techniques

9Notably intermediate results related to static analysis.
Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 20 / 21

Simpler CHARIOT approach to static analysis

bismon is still work in progress

Unreleased, but incomplete pre-α GPLv3+ code on
github.com/bstarynk/bismon (in september 2018):

TODO: choosing a simple illustrative open-source firmware example (with partners)

TODO: choosing a simple static analysis goal (probably stack overflow) to focus on

runtime (naive GC) and persistence : working

multi-threaded agenda machinery with tasklets : working

client HTTP (and management of contributors) with login form : mostly working

meta-programming approach:

(non-bootstrapped) generation of internal C code
generation of JavaScript (in browser), half done
TODO: generation of HTML5
TODO: generation of GCC plugins in C++ (leverage on GCC MELT
experience)
TODO: analysis of GCC code (to ease plugins generation)

TODO: “single page application” web interface (above CodeMirror & JQuery) - so bismon is
not yet usable in september 2018 by others than me

Basile STARYNKEVITCH (CEA LIST) Static Code Analysis for Safer IoT Development Oct. 11, 2018 21 / 21

http://github.com/bstarynk/bismon

	Introduction
	Importance of source code
	Simpler Chariot approach to static analysis

