
QISH introduction
release 0.9 on Sun, 23 Feb 2003 14:55:43 +0100

prcsproj qish0.88

Basile STARYNKEVITCH
basile@starynkevitch.net
http://www.starynkevitch.net/Basile/

8, rue de la Faencerie, 92340 Bourg La Reine, France

February 23, 2003

1

http://www.starynkevitch.net/Basile/

CONTENTS CONTENTS

Contents

1 Short overview 5

2 Requirements 5

3 The garbage collector 6
3.1 Introductory examples . 7
3.2 Data structure of objects . 11
3.3 required coding practices . 12

3.3.1 No interior pointers . 12
3.3.2 No multi-threading . 12
3.3.3 Limited global data . 12
3.3.4 Pointers are volatile . 13
3.3.5 Indicate arguments and locals to the GC 13
3.3.6 No composition of function calls 15
3.3.7 Complete allocation . 15
3.3.8 Notification of updates (write barrier) 16
3.3.9 Optional explicit garbage collection 16
3.3.10 Exception handling . 17
3.3.11 Utility routines . 18

3.4 Mandatory routines to the GC 19
3.4.1 Copying function qish gc copy p 19
3.4.2 Minor scan of a movable object qish minor scan p . 19
3.4.3 Full scan of a movable object qish full scan p . . . 20
3.4.4 Full scan of a fixed object qish fixed scan p 20

3.5 Using Qish in C++ code . 22
3.6 Advanced application explicit forwarding. 22

4 A tiny benchmark 23
4.1 benchmark results . 23
4.2 Tuning Qish . 25

5 ToDo list (multi-threading?) 26

2

CONTENTS CONTENTS

Please be nice to send me an email if you use this information and this Qish
software.

Qish is available from http://www.starynkevitch.net/Basile/qish-0.9.tar.gz

(as a gnuzipped source tarball) and this document is on http://www.starynkevitch.net/Basile/qishintro.html.
See also my home page on http://www.starynkevitch.net/Basile/ or Qish
page http://freshmeat.net/projects/qish/on Freshmeat for announcement
of newer versions.

Documentation should be rewritten. Multithreading is not fully working yet
in version 0.9. Stay tuned.

A mailing list (not yet archived) is available as qish@lists.apinc.org
send an email to qish-subscribe@lists.apinc.orgor to me at basile@starynkevitch.net
for subscription.

Qish is developed on a PC/x86 running Linux. It could be portable to other
Unixes machines1. Qish could be ported to x86 under Windows, but I don’t want
to do that.

To compile Qish on a strictly conforming ISO C 1999 compiler use the -DSTRICT C99
compile flag2. But Qish requires that successful pointer arguments are located
consecutively (upwards or downwards) in memory (which is not guaranteed or
even meaningful in general for ISO C 1999 compilers.).

The machine dependent parts of Qish are carefully coded, but not tested else-
where. If you have access to other machine architecture, please tell me if you
succeeded in compiling, porting, and running this software. Qish requires that
successive pointer arguments and pointer fields are consecutive in memory.

Boehm’s conservative garbage collector on http://www.hpl.hp.com/personal/Hans_Boehm/gc/

should be easier to use3, but does not compact memory, as any copying GC (like
Qish) does. See the section 4 for a small (and not very significant) benchmark
running both Boehm’s and Qish GC (and explicit malloc and free).

This GC is not mostly copying4. It copies every movable object (even if it is
on the call stack - in that case the variable or argument should be known to our
GC thru the BEGIN LOCAL FRAME or equivalent macro), and mark fixed objects
(which have finalizers).

This GC uses classical algorithms (inspired by some A.Appel’s papers and R.Lins
& R.Jones’ book). But I know of no other (classical) copying generational GC, us-

1On some machines you’ll need to flush the register stack in qish garbagecollect - for
example, Sparc machines might need ta 3 to flush registers

2With this flag, Qish compiles without warnings both on GNU gcc-3.2 with -pedantic
-std=c99 and on tcc - see http://tinycc.org/

3Boehm’s GC has an interface compatible with malloc, is compatible with threads and final-
ization, and is used in GCC-3 for the Java runtime

4Unlike Bartlett’s GC -1990- US patent 4,907,151 - thanks to Gerd Moellmann for the refer-
ence

3

http://www.starynkevitch.net/Basile/qish-0.9.tar.gz
http://www.starynkevitch.net/Basile/qishintro.html
http://www.starynkevitch.net/Basile/
http://freshmeat.net/projects/qish/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://tinycc.org/

CONTENTS CONTENTS

able for C, which can be customized to arbitrary data structures (while following
stringent coding rules). This GC is probably best suited for generated C code,
since the generator could be designed to follow every required coding rules. A
code generator might use C-- (and QuickC-- see http://www.cminusminus.org/)
when it will be available.

This GC is a copying precise (or exact) garbage collector. This means that
pointers are changed by the GC (which may be called at every allocation point).
The GC may change any (GC-managed) pointer on the call stack and in the heap.
So you have to particularily be careful to tell the GC where are each pointer on the
stack5 and inside each object in the heap6, and the GC might change any of them
(to the address of a fresh copy of the pointed object). And the compiler should
not optimize7 too much (eg by putting a local variable only in a register where
the GC can’t change it). You may avoid excessive optimisation by carefully using
the volatile keyword. the -fvolatile compile flag is not needed An alternative
compiler on Linux is tcc8 on http://tinycc.org which compiles extremely
quickly (and is very suitable for dynamically generated C code using Qish and
following Qish coding conventions). Copying collectors condemn a region of
memory then push all objects out of this region by copying them, forwarding the
pointer to them, and changing all pointers to the new copy.

This GC is a generational garbage collector. This means that the garbage col-
lector focus work on newer objects, assuming that they are mostly temporary and
will die soon. This suggests or favors a programming style with lots of (usually
temporary) object allocations. So object allocation is quite fast on the average.
But the garbage collector has to notice and scan explicitly any old object which
has been updated by the application to point to a newer object. This require a
write barrier, i.e. the notification of object updates thru qish write notify.

Any precise garbage collector requires some coding conventions in C (to know
about pointers on the call stack, or for the write barrier,...): examples include the
Ocaml runtime primitives coding conventions (see http://caml.inria.fr/ocaml/htmlman/manual032.html
section 18.5) or the Xemacs primitives coding conventions (see http://www.xemacs.org/Documentation/21.5/html/internals_12.html).

5You tell the GC where are the stack pointers with the BEGIN LOCAL FRAME or equivalent
macro, which tells the GC the number of local pointers, the first of them, and the number of
argument pointers and the first such argument.

6You tell the GC where are pointers inside heap objects by explicitly providing mandatory
routines (see section 3.4) to scan and copy such heap objects.

7This is why the volatile keyword is required for arguments and for the locals structure.
8Tcc don’t optimise much and ignores the volatile keyword. The generated code is about 30%

slower than GCC with optimisation, but the compilation time is sometimes ten times faster than
with gcc.

4

http://www.cminusminus.org/
http://tinycc.org
http://caml.inria.fr/ocaml/htmlman/manual032.html
http://www.xemacs.org/Documentation/21.5/html/internals_12.html

2 REQUIREMENTS

1 Short overview

Qish contains a reusable (i.e. rather generic) generational copying garbage col-
lector usable from C. This garbage collector requires a particular (and low-level)
coding style.

If this stuff is useful to you, be nice to send me an email to basile@starynkevitch.net.
The license of this software is the GNU Lesser General Public License 9 (i.e.
LGPL - see the COPYING file); so this is a free or opensource software.

Why the name Qish? Qish was the father of Sal, see 1 Samuel, chap 9 (the
Bible). I’m bored of finding useful acronyms (especially pleasant in several Eu-
ropean languages), so I am using names from the Holy Bible. At least I hope that
Qish is not offensive10.

2 Requirements

To use this package, you need the following stuff:

• Ruby (for scripting) see http://www.ruby-lang.org/. I don’t know much
Perl and prefer Ruby for scripting tasks

• a Glibc system such as GNU/Linux, etc... I am using a Linux Debian/Unstable
system with a 2.4.19 kernel.

• The GNU make utility, since I depend upon GNU make extensions - see
http://www.gnu.org/software/make/. I am using make 3.80.

• The GNU GCC compiler version 3.2 - see http://www.gnu.org/software/gcc/.
Use the -fvolatile -fvolatile-global flags to the GNU com-
piler when compiling your application and/or use the volatile keyword
when appropriate. I actually believe you can avoid using -fvolatile
-fvolatile-global if you carefully use a volatile struct {...} _locals_
initialized to all zeros and if all your pointer arguments are explicitlyvolatile.
But as acknowledged several times, there is a (plateform dependent) issue
with compiler optimization. When in doubt, disable 11 most optimizations!

• the Tiny CC compiler (by Fabrice Bellard) on http://tinycc.org is very
useful to compile (perhaps generated) C code using Qish (but you may com-
pile the runtime with GCC using optimisations). tcc 0.9.14 compiles

9it used to be GPL only.
10In the past I experimented on a reflexive system that I also named Qish - they have no much

in common except the name and the author
11Experimentally gcc -O1 usually works but gcc -O3 optimize too much.

5

http://www.ruby-lang.org/
http://www.gnu.org/software/make/
http://www.gnu.org/software/gcc/
http://tinycc.org

3 THE GARBAGE COLLECTOR

very quickly (sometimes 10 times faster than gcc 3.2) while producing code
no more than 30% slower than gcc -O3.

• This documentation is processed with LaTeX and HeVeA. HeVeA is a good
LaTeX to HTML translator. See http://para.inria.fr/ maranget/hevea/ It is
written in Ocaml. See http://www.ocaml.org/

• I am using PRCS for version control. See http://prcs.sourceforge.net/.
But it is only needed in the scripts/qish_snap Ruby script. You
should not need it otherwise.

3 The garbage collector

A garbage collector (or GC) manage resources (mostly memory). If you are not fa-
miliar with garbage collection, see R.Jones’s GC page on http://www.cs.ukc.ac.uk/people/staff/rej/gc.html

and also http://www.memorymanagement.org. In this document, an object is
just a memory zone managed by the GC; it may be or not an object visible to
your application. All pointers to this object points to the start of the object and are
managed by the GC. A word may contain a pointer or some kind of integer. On
x86, words are 4 byte long.

A copying GC moves objects. The advantage of moving objects is that freeing
dead objects is easy; alive objects are moved outside a big zone, and then this
big zone is freed at once. So dead objects are not reclaimed one by one. Also, a
copying GC do compact the used memory (but need temporarily twice as much as
memory), thus avoiding fragmentation. So, pointers are changed by the copying
GC. Therefore, all object pointers are volatile for the C compiler, and the
garbage collector needs to know about every (garbage collected) pointer.

A generational GC favors young objects. It separate objects in old and new
regions, and do two kinds of garbage collections (minor and full). Objects are lin-
early allocated in a birth zone. When this zone is full, a minor garbage collection
is trigerred, which copy alive born object into the old region. Once in a while a full
garbage collection is done, by condemning the previous old region and copying
alive old objects into a fresher old region (and also working on the birth zone like
the minor GC does). Care should be taken about pointers from object in the old
region to the new birth one. So every object modification (when a pointer field
in an object is changed) should be explicitly notified to the GC. Allocation in our
GC is much faster (in the usual case, when no garbage collection is needed) than
a cheap call to a malloc like routine.

Our GC also provides finalized fixed objects. Such objects are not moved, and
are explicitly destroyed (one by one) by the GC, which calls a finalization routine.
Finalized objects are more costly than copied ones. They are intended to manage

6

http://www.ocaml.org/
http://prcs.sourceforge.net/
http://www.cs.ukc.ac.uk/people/staff/rej/gc.html
http://www.memorymanagement.org

3.1 Introductory examples 3 THE GARBAGE COLLECTOR

external system resources like files or windows. The finalization routine should
not use or change garbage collected pointers or fields (except by clearing them).
Our finalized objects are not like Java’s in that respect: the finalizer routine cannot
allocate any GC-ed object!

Our GC also supports tagged integers. Any pointer word ending with a set
LSB bit is assumed to be such an integer. Use the qish_is_tagged_int in-
lined function to test if a pointer is such a tagged integer. If it is one, you can con-
vert it to int or longwith the QISH_TAGGED2INT and QISH_TAGGED2LONG
macros. To make a tagged integer (ie to encode integers in a GC-ed pointer) use
the QISH_INT2TAGGED or QISH_LONG2TAGGED macros.

Qish provides global constant pointers (up to 65536 pointers). Use QISH GLOBCONST(N)
to get the N-th constant, and QISH SET GLOBCONST(N,V) to set the N-th con-
stant to the pointer value V.

Qish also provides module constant garbage collected pointers (one pointer
per module).

3.1 Introductory examples

Notice: examples talk about Ruko which is obsolete.
To give a concrete feeling about Qish runtime, here are some illustrative ex-

amples from Ruko. Ruko provides (among other types) vectors and tuples, which
are sequences of garbage-collected object pointers. Vectors are mutable (the com-
ponents vect->tab can be changed) but tuples are immutable (the components
are set at creation time and then are read-only).

The file ruko/ruko.h declare the following structure (common to vectors
and tuples):

struct ktuple t {
unsigned header; // first word is a common discriminating
header
void* tab[0]; // next words are GC-ed object pointers
};

The header word encodes both a kind (which is KIND TUPLE for a tuple
and KIND VECTOR for a vector) and a size - which for vectors and tuples is the
number of components, i.e. the real length of the vect->tab field. But other
uses of Qish have their first word containing a garbage-collected non-null pointer
to a class object.

Here is the commented code (from file ruko/ruko.c) of the ruk dup vector
function, which duplicate a source tuple or vector as a fresh newly allocated vec-
tor, initialized with the same components as those of the source. This function
returns a garbage collected pointer:

7

3.1 Introductory examples 3 THE GARBAGE COLLECTOR

struct ktuple t*
ruk dup vector(struct ktuple t* volatile vec) { //
volatile arguments!

It is mandatory that all garbage collected argument pointers should be declared
volatile as above, because the GC may move (i.e. change) such pointers. Also, all
garbage collected argument pointers should be consecutive.

struct ktuple t* volatile tup=0;
// local variable tup is also volatile
int kd=0; int len=0; int i=0;

We have one single local garbage collected pointer tup (which will hold the
result of the function). Since it is alone we just declare it volatile and initialize it
to 0. If we had several local GC-ed pointers (or even one of them) we would pack
them inside a volatile structure, conventionally named locals and also initial-
ized to all 0. It is important that all local GC-ed pointers variables are volatile,
consecutive, and initialized to 0 (or a valid GC-ed pointer). It is a good habit to
initialize every local variables, even the plain int ones.

// mandatory start of GC-ed frame
BEGIN SIMPLE FRAME(1, vec, 1, tup);
// we have 1 garbage collected argument starting at vec
// we have 1 GC-ed local pointer starting at tup

The call to the (deprecated BEGIN SIMPLE FRAMEmacro, or) BEGIN LOCAL FRAME
when using the locals structure) is mandatory. It indicates to the GC the num-
ber of garbage collected pointer arguments, and the first such argument, and the
number of garbage collected local pointers, and the first such pointer. The ex-
panded C code registers a GC frame (in a linked-list of frames handled by the
GC) and executes in a small constant time. The BEGIN SIMPLE FRAME macro
call should be the first executable statement (after initialization of variables to
constants such as pointer 0) of the body of any function using the GC.

Actually it is strongly suggested to always use a locals structure de-
clared volatile struct for local garbage collected pointers. Actually do
not use the deprecated BEGIN SIMPLE FRAME macro but only use the recom-
mended BEGIN LOCAL FRAME (when you have pointers both in arguments and
in locals), or BEGIN_LOCAL_FRAME_WITHOUT_ARGS (when you have
pointers only in locals) or BEGIN_FRAME_WITHOUT_LOCALS (when you
have only pointers in arguments).

Then we compute the kind of the source vector. We only duplicate vectors and
tuples. To duplicate, we compute the length of the source (taken from its header).

8

3.1 Introductory examples 3 THE GARBAGE COLLECTOR

kd = ruk kind(vec);
if (kd == KIND VECTOR || kd == KIND TUPLE) {
len = HEADERSIZE(vec->header);

Once the length is computed, we allocate the resulting tup with a call to
qish allocate. This call may trigger a garbage collection, which may change
(by moving them) some or even all garbage collected pointers, including the cur-
rent frame local pointers or argument pointers. With compilers without inlining,
you might consider using the QISH ALLOCATE macro (invoke it without any
side-effects in arguments, eg QISH_ALLOCATE(--p,sz++); is incorrect).

More generally, you inhibit all small inline functions by compiling your ap-
plication with the -DNO_QISH_INLINE flag. But then you have to use macros
instead of functions.

tup = qish allocate(sizeof(*tup) + len*sizeof(void*));
//a garbage collection may occur above, changing many pointers

The qish allocate function returns a zeroed chunk of memory. We have
to initialize it by filling all relevant fields:

tup->header = MAKEHEADER(KIND VECTOR, len);
for (i=0; i<len; i++) tup->tab[i] = vec->tab[i];
} // end if kind is KIND VECTOR or KIND TUPLE

Each function should end with the macro call to EXIT FRAME, which pops the
frame registered by (the deprecated BEGIN SIMPLE FRAME) or BEGIN LOCAL FRAME.
This macro should only be followed by a simple return statement, which re-
turns a constant or a simple variable:

EXIT FRAME();
return tup;
} // end of ruk dup vector

The preferred coding style is to have a locals structure, which should be
volatile and initially cleared!

// preferred coding
void* foo(struct ktuple t* volatile tup,

void* volatile val) {
// declare and clear a volatile locals structure for local pointers
volatile struct { void* ptr; void* res; } locals
= {0,0};

9

3.1 Introductory examples 3 THE GARBAGE COLLECTOR

BEGIN LOCAL FRAME(2,tup);
//... use locals fields as the only GC pointer local variables
if (some condition(tup))
locals .res = val;

//...
EXIT FRAME();
return locals .res;
}

This idiom is so common that a tiny Ruby script scripts/gen locals
exist to generate macro definitions like

// generated by gen locals script
#define l res locals .res

The script generate such definitions for every different occurrence of l *
names in the source. So just code l res, run the script (with the .c source as
first argument and the generated .h as second argument), and include its output
near the start of your file.

A function which changes a garbage collected object by updating a pointer
field in it should notify the garbage collector, for example:

// this function set the component of a vector returning its previous
value
void*
ruk vector set(struct ktuple t* volatile tup, void*
volatile val, int rk) {
int sz=0;
void* oldval=0;
BEGIN SIMPLE FRAME (2, tup, 1, oldval);
if (ruk kind(tup) != KIND VECTOR) goto end;
sz = HEADERSIZE(tup->header);
if (rk<0 || rk>=sz) goto end;
oldval = tup->tab[rk];
tup->tab[rk] = val;
qish write notify(tup); // notification of a changed ob-
ject
end:
EXIT FRAME();
return oldval;
}

10

3.2 Data structure of objects 3 THE GARBAGE COLLECTOR

Note that every function which may use directly or indirectly the GC should
follow the same coding rules (detailed below). Using the GC means either allo-
cating new objects or calling functions which may use the GC. Following these
rules is ok even for other functions, when in doubt always follow them.

The macro QISH_WRITE_NOTIFY is equivalent to the qish write notify
function, provided this macro is invoked without side-effects.

The application has to follow some (very liberal) rules regarding data struc-
tures.

3.2 Data structure of objects

Moved objects should all start with a common prefix (i.e. a word). Their first
word should never be zero12, so it can be a non-nil pointer 13 (garbage collected or
not) or a header word. All objects should be at least two words long. The GC do
not need any additional word for moved objects.

Objects should know their size (the GC do not manage by itself the objects’
size) and their data type.

For example, one could start every object with an unsigned headerwhose
topmost byte is a non-zero kind number and whost 3 lower bytes encode some siz-
ing information (dependent on the kind).

Your application has to define all its objects types and data representations,
provided they start with a never-zero word or pointer.

As a simple toy example (nearly meaningless, only for illustrative purposes),
suppose you are coding an integer calculator with formal variables. Then each
object can start with two half-words, a kind and a size or code. Objects can be
binary-operations, or variables (or tagged integer).

enum {
KIND_NONE=0 /*unused*/,
KIND_BINOP,
KIND_VARIABLE

};

Binary operations in your calculator will be represented like:

enum { OP_NONE, OP_ADD, OP_SUB, OP_MULT, OP_DIV };

struct binop_st {

12A zeroed first word indicates forwarded objects to the GC
13The pointer could be some kind of descriptor, or even a C++ vtable pointer, if you have a tree

of classes sharing a common root class, with only single inheritance, and virtual methods.

11

3.3 required coding practices 3 THE GARBAGE COLLECTOR

short kind; /*always KIND_BINOP*/
short opcode;
void* left;
void* right;

};

Variables have a value (either a tagged integer or an binary operation) and a
name; the size is the length of the name, and variables are objects of various size.

struct variable_st {
short kind; /*always KIND_VARIABLE*/
short namelen; /*length of name*/
void* value; /*value of variable*/
char name[1]; /*actually [namelen] bytes + final ’\0’ */

};

3.3 required coding practices

Our GC is not conservative14, but exact. It has to know about every garbage
collected pointer, and usually modify them (when copying alive objects).

3.3.1 No interior pointers

It is not allowed to have pointers to the inside of any garbage collected object. Ev-
ery pointer should point to the start of such objects. (therefore, your C++ application
cannot have multiple inheritance)

3.3.2 No multi-threading

Our GC does not support threading. If you dare use Posix threads, be careful that
only one thread should use the GC.

3.3.3 Limited global data

You should have almost no global pointers (I believe having lots of global data is
a bad practice). The only permissible exceptions are:

14Conservative GCs [e.g. Boehm’s] are much easier to use, but they might leak, may be slower
on some applications, and do not compact memory. But Boehm’s GC is not disruptive like Qish,
and has an API compatible with (or similar to) malloc.

12

3.3 required coding practices 3 THE GARBAGE COLLECTOR

1. you can use the small (fixed size) 15 array of global pointers qish_roots
as you wish, reading and writing in it any pointer to a GC-ed object (or the
nil pointer, or a tagged integer).

2. Each module is described by an entry in qish_moduletab. Each such
entry contain a rather constant pointer. You can set or change the constant
of module to pointer p by calling qish_changeconstant(i, p), and
you can get this constant by qish_constant(i) or even accessing di-
rectly the km_constant field in the entry of qish_moduletab. In
practice, you could make this constant point to a structure of GC-ed point-
ers.

3.3.4 Pointers are volatile

All pointers are volatile (because the GC silently moves them), in particular ar-
guments should be volatile. You should compile with the -fvolatile and
-fvolatile-globalflags to the gcc compiler. Most importantly, you should
explicitly declare volatile your formal arguments. So the following is incorrect

#error formal argument not declared volatile
void* foo(struct variable_st* var) { /*body*/ }

You should definitely code instead like this - notice that the volatile qual-
ifier goes after the * indicating a pointer):

/* explicit volatile argument */
void* foo(struct variable_st* volatile var) { /*body*/ }

Omitting the volatile qualifier does produce hard to find bugs.

3.3.5 Indicate arguments and locals to the GC

Each function body 16 should start with a prologue and end with an epilogue. The
prologue mark the current call frame (remembering the first argument, the first lo-
cal pointer, and the number of arguments and of local pointers), and the epilogue
reset the previous call frame. The prologue is

15 The global roots is an array of QISH NB ROOTS pointers defined as 64 in qish.h. You
could if needed change it to a rather small value (at most a few hundreds): at every garbage
collection, the whole roots array is scanned and updated, so having lots (e.g. thousands) of such
roots will not be reasonable.

16At least each function using directly or not the GC, i.e. either allocating memory with
qish allocate or calling -directly or indirectly- any function which itself does allocation

13

3.3 required coding practices 3 THE GARBAGE COLLECTOR

BEGIN_SIMPLE_FRAME(nbparam,firstparam,nblocal,firstlocal);
the epilogue is EXIT_FRAME();. The cpu time cost of the prologue or epi-
logue small, nearly constant, and independent of the numbers of locals or ar-
guments. Actually, this BEGIN_SIMPLE_FRAME macro is deprecated. Use
the BEGIN_LOCAL_FRAMEmacro (when you have parameters and a _local_
struct), or BEGIN_FRAME_WITHOUT_LOCALS macro (when you have param-
eters but no local pointer), or BEGIN_LOCAL_FRAME_WITHOUT_ARGSmacro
(when you have a _local_ struct without any pointer parameters).

All local pointers should be explicitly initialized to 0 (or a simple value).
It is not permissible to return from a function without going thru EXIT_FRAME();

the suggested coding convention is the have one single exit point, ie a single
EXIT_FRAME(); at the end followed by a return statement. If a function
returns a garbage-collected value, it should be a local pointer.

For convenience, there is also a BEGIN_LOCAL_FRAME(nbparam,firstparam)
macro, which assumes that a local variable named locals is defined as a struc-
ture containing only garbage-collected pointers. A Ruby script gen locals is
provided to generate (in a separate file to be included) for each variable named
like l *, e.g. l foo a macro #define l_foo _locals_.foo; in practice,
local GC-ed pointers eg bar should be declared as a pointer field in locals
and referred as l bar.

For convenience, there is a BEGIN_FRAME_WITHOUT_LOCALS(nbparam,firstparam)
macro to be used when you don’t have any local garbage-collected pointer (but
only parameters). Symetrically, a BEGIN_LOCAL_FRAME_WITHOUT_ARGS()
macro is provided, when you only have local garbage collected pointers inside
your usual locals structure.

If a frame (therefore a function body) have no local pointers (or no pointer
arguments) it can pass qish nil (or any unused adress) as the appropriate ar-
gument to the BEGIN SIMPLE FRAME or BEGIN LOCAL FRAME macro. For
example, a function without arguments and with locals encapsulated pointer
variable should start with a BEGIN LOCAL FRAME(0, qish nil). Internally
qish nil is a pseudo-data whose address is the nil pointer.

Every local GC pointer should be explicitly initialized to a simple value (usu-
ally the null pointer). It is best to clear any pointers heavily used in a loop when
exiting out of the loop.

You cannot use longjmp without special measures. If you want exceptions,
use the BEGIN EXCEPT BLOCK CATCH EXCEPT BLOCK END EXCEPT BLOCK
THROW EXCEPTION macros from file qish.h

14

3.3 required coding practices 3 THE GARBAGE COLLECTOR

3.3.6 No composition of function calls

Since each pointer should be known to the GC (either as a argument or a local
explicited thru BEGIN_SIMPLE_FRAME or BEGIN_LOCAL_FRAME, or as a
global root or constant, or as a field in a garbage collected object) it is not permis-
sible to call several functions, e.g.

#error no function composition
l_res = f(g(y),l_z->ptrfield);

but you should code thru a temporary value

/* use a temporary variable */
l_tmp = g(y);
l_res = f(l_tmp, l_z->ptrfield);
}

3.3.7 Complete allocation

Every allocation of a garbage collected object is done thru a call to one of the
following functions (which may trigger a garbage collection):

• qish allocate(bytesize) to allocate an ordinary (movable) object with
a natural (word) alignement. This is the most often used allocation function;
usually the bytesize is some sizeof(type).

• qish allocate aligned(bytesize,alignment) to allocate a mov-
able object with an explicit alignment expressed in bytes (which must be a
small power of 2 in words).

• qish fixed alloc(bytesize,finalizer) to allocate a fixed finalized
object (aligned to at least the sizeof(double)), with an optional final-
ising routine (called by the GC with the adress of the fixed object).

Once an object is allocated it can be (and should be) filled. The allocated
object should be filled to become valid (for marking and scanning routines) before
the next allocation. Memory provided by the above allocation routines is cleared
to all-zero bytes.

It should be noted that in the usual case qish allocate and allocate aligned
are very quick and inlined routines (basically a pointer increment and a compare
to the birth region limit) which occasionally triggers a garbage collection. Adven-
turous expert users could even allocate several object at one with a single call to
qish allocate, giving it the cumulated total size of all allocated objects.

15

3.3 required coding practices 3 THE GARBAGE COLLECTOR

Since object allocation is very quick (much faster than a call to malloc) it is
expected that the application makes frequent allocation to short lived objects.

The macro QISH_ALLOCATE does the same as qish allocate provided
its invocation has no side-effects.

3.3.8 Notification of updates (write barrier)

Since the garbage collector has to track pointers from old to new generation, it
should be aware of any updates of allocated objects. This is done by calling
qish write notify(objptr) after changing the GC-ed pointers in the object
objptr and before any further allocation or call.

It is not required to notify the GC after any non-pointer updates (e.g. adding
bytes into a garbage collected string). It is better to code some useless calls to
qish write notify than to forgot one.

A garbage collection can be triggered at each qish write notify points.
Explicit update notification favors a functional programming style (where up-

dates are rare).
Assignement to local GC pointers, to arguments, and root variables do not

require any notification.

3.3.9 Optional explicit garbage collection

The garbage collector can be explicitly called by the application with
qish garbagecollect(size,fullf lag)where the size is an estimation (which
can be left as 0) of the needed size -in bytes- of future objects and the fullf lag is
non-zero to force a full garbage collection (otherwise, a minor collection will be
done, unless the old generation has grown significantly).

To be sure that at least size bytes are allocatable without GC, you can call
qish reserve(size) which calls the garbage collector unless size bytes are
available in the birth zone. This is particularily useful in applications having
garbage-collected type descriptors, which have to bootstrap and fill the type de-
scriptors’ descriptor without any garbage collection.

It could be interesting to trigger an explicit garbage collection once in a while
in an idle loop, or before an important processing requiring lots of allocation or
recursion. This is always an optimisation, and the GC will work without a single
explicit call to qish garbagecollect in the application code.

16

3.3 required coding practices 3 THE GARBAGE COLLECTOR

3.3.10 Exception handling

Exception handling has to cooperate with the GC, because of the frame linking
mechanism. You cannot simply call longjmp or throw C++ exceptions17. In-
stead you have first to declare (in your application) one (or very few) void*
global (or static) pointer variable e.g. exv. You also need a local integer vari-
able cod holding a non-zero error or exception code (usable as you want, but
never 0 if exception thrown, it is the result of setjmp) and a local pointer
locals.exobj holding any exception (garbage-collected) object.

Then you surround any potentially exception-raising code (after the usual
BEGIN LOCAL FRAME... or similar macro) with:

BEGIN_EXCEPT_BLOCK(exv);
// your code here may directly or indirectly throw “exceptions”

Then you code as usual, you can call some other routines which do allocation
and may indirectly throw an “exception” (using the THROW_EXCEPTIONmacro
detailed below). The exv argument to the BEGIN_EXCEPT_BLOCK(exv);
macro (vaguely similar to the try keyword of Java or Ocaml) holds the adress of
the exception-catching frame, and this BEGIN_EXCEPT_BLOCK(exv); opens
a brace (so starts a C code block). Then you catch exceptions with

CATCH_EXCEPT_BLOCK(cod,_locals_.exobj);
// your code handle here exception of error cod ...
// ... with _locals_.exobj set to the exception object

So this CATCH_EXCEPT_BLOCK is vaguely similar to the with keyword of
Java or Ocaml exception handlers. At last you have to end the exception hanling
code with

// this ends the exception handling code
END_EXCEPT_BLOCK(exv);

The void* variable argument to END_EXCEPT_BLOCK(exv); should al-
ways be the same as the argument of the matching previousBEGIN_EXCEPT_BLOCK(exv);.

Inside the normal block enclosed with BEGIN_EXCEPT_BLOCK and CATCH_EXCEPT_BLOCK
you can call functions (or even directly) which throws (directly or indirectly) an
“exception” with THROW_EXCEPTION(exv,Cod , Exob). The Cod should
be a non-zero integer (an error code, passed as the second argument to longjmp)
and the Exob is the (garbage-collected) error object. If this “exception” throwing
happens, control jumps to the CATCH_EXCEPT_BLOCK.

Of course, the BEGIN_EXCEPT_BLOCK,CATCH_EXCEPT_BLOCK and END_EXCEPT_BLOCK
have to be in the same C code block (so the same function).

17If you use C++ exceptions, ensure (by coding tricky appropriate constructors and destructors)
that the EXIT FRAME is called on exceptional frame unwinding. You are on your own.

17

3.3 required coding practices 3 THE GARBAGE COLLECTOR

3.3.11 Utility routines

The Qish runtime provide some utility functions, in particular:

• qish strhash(string,length) compute an hashcode of a given string

with an explicit length; if this length is negative, the string is supposed
null-terminated, as if length == strlen(string)

• qish sigexecvp(file,argv) spawn a process to execute file with the
given program argv null-terminated arguments and wait for its completion.

• qish prime after(i) returns a prime number bigger than i provided
that 0 < i < 10000000 = 107 which can be useful for hashtables, etc.

• qish parameter(name) retrieves the string-value of a runtime param-
eter of a given name.

• qish put parameter(name,val) put into the runtime paramter named
name the string value val

• qish parse configfile(filename) parse a simple configuration file
and set parameters appropriately

• qishgc init(); should be called once to initialize the garbage collec-
tor, before any allocation!

• qish load module(modulename,rank) loads (with dlopen) a shared
object module at a given rank. It returns 0 iff ok. A previous module at the
same rank is closed latter with qish postponed dlclose

• qish get symbol(name,modrank) gets the address of the symbol of
given name in a module of given modrank or in any modules if modrank <

0

• qish postponed dlclose() close any previous module with dlclose
and should be called when the call stack is very low (i.e. in your event loop)

• qish panic is a printf-like macro which aborts after displaying a panic
message.

18

3.4 Mandatory routines to the GC 3 THE GARBAGE COLLECTOR

3.4 Mandatory routines to the GC

Your application should provide four mandatory routines to the GC and store their
address in global function pointer variables before any GC call. All such functions
should be provided (give a dummy function if not needed). Since these functions
are called by the GC, they should not follow the above coding guidelines (no
BEGIN SIMPLE FRAME etc...) and should of course never allocate objects or
call the GC.

3.4.1 Copying function qish gc copy p

The function pointer qish gc copy p should be set by your application to a
routine which copy an object (into an address provided by the GC). Its prototype
is void* gccopy (void**padr, void* dst, const void* src).
It should set *padr to the new adress of the copy (usually dst or some aligned
word after) and should return the first word after the copied object.

For simple cases (word aligned structures) the copy routine can be as simple
as e.g. a switch of cases like

/*after determining the dynamic object type*/
((object_type)dst) = *((object_type*)src);
return ((object_type*)dst)+1;

after having determined the dynamic object type (e.g. thru its header).
The first word of the copied object should not be zero.

3.4.2 Minor scan of a movable object qish minor scan p

The function pointer qish minor scan p should be set by your application to
a routine which scans for the minor garbage collection and object by updating each
of its pointer fields with the QISHGC MINOR UPDATE macro (called with the
pointer field). This routine should return the next word after the scanned object.
Its prototype is void* minorscan (void*ptr); and it should return the first
word after the scanned object at address ptr.

For simple cases (word aligned structures) the minor scan routine can be as
simple as e.g. a switch of cases like

/*after determining the dynamic object type*/
QISHGC_MINOR_UPDATE(((object_type*)src)->ptrfield1);
QISHGC_MINOR_UPDATE(((object_type*)src)->ptrfield2);
/* etc for every field*/
return ((object_type*)src)+1;

19

3.4 Mandatory routines to the GC 3 THE GARBAGE COLLECTOR

after having determined the dynamic object type (e.g. thru its header).
When you are sure that the pointer is a true pointer (ie is never a tagged integer)

you can use QISHGC MINOR PTR UPDATE instead of QISHGC MINOR UPDATE.
Qish accepts not only null pointers, but also any address inside the first page

of address space (so on x86 any address below 0x1000). For instance you could
mark emptied slots in hashtable specially by such an address (eg (void*)16).

3.4.3 Full scan of a movable object qish full scan p

The function pointer qish full scan p should be set by your application to a
routine which scans for the full garbage collection and object by updating each of
its pointer fields with the QISHGC FULL UPDATEmacro (called with the pointer
field). This routine should return the next word after the scanned object. Its proto-
type is void* fullscan (void*ptr); and it should return the first word after
the scanned object at address ptr.

For simple cases (word aligned structures) the full scan routine can be as sim-
ple as e.g. a switch of cases like

/*after determining the dynamic object type*/
QISHGC_FULL_UPDATE(((object_type*)src)->ptrfield1);
QISHGC_FULL_UPDATE(((object_type*)src)->ptrfield2);
/* etc for every field*/
return ((object_type*)src)+1;

after having determined the dynamic object type (e.g. thru its header).
When you are sure that the pointer is a true pointer (ie is never a tagged integer)

you can use QISHGC FULL PTR UPDATE instead of QISHGC FULL UPDATE.
Usually the full scanner has the same code as the minor scanner, except for the

update macros QISHGC FULL UPDATE instead of QISHGC MINOR UPDATE.
If the first word of your object is not a header but a garbage collected pointer

-for instance the class pointer in a ObjVlisp-like object language (i.e. single inher-
itance language with classes reified as objects)-, be careful in your scanning GC
routines to check that it is a pointer (you could use the QISH_IS_MOVING_PTR(ptr)
macro), then update the pointer first (with QISHGC FULL UPDATE or QISHGC MINOR UPDATE),
then use it appropriately (your reified class could contain a description of its fields,
or scanning routine pointers, ...).

3.4.4 Full scan of a fixed object qish fixed scan p

The function pointer qish fixed scan p should be set by your application
to a routine which scans for the full garbage collection and object by updating
each of its pointer fields with the QISHGC FULL UPDATE macro (called with

20

3.4 Mandatory routines to the GC 3 THE GARBAGE COLLECTOR

the pointer field). This routine returns void and knows about the fixed object size.
Its prototype is void fixedscan (void*ptr, int size); where ptr is
the address of the object and size is its size in bytes.

For simple cases (word aligned structures) the fixed scan routine can be as
simple as e.g. a switch of cases like

/*after determining the dynamic object type*/
QISHGC_FULL_UPDATE(((object_type*)src)->ptrfield1);
QISHGC_FULL_UPDATE(((object_type*)src)->ptrfield2);
/* etc for every field*/
return;

after having determined the dynamic object type (e.g. thru its header).
Even an application with only moving objects (and no finalized, fixed objects)

should provide a dummy fixed scanner.
For the simple examples in section 3.2, the routines could be:

void* gc_copy(void**padr, void* dst, const void* src) {
switch (*(short*)src) {
case KIND_BINOP:
((struct binop_st)dst) = *((struct binop_st*)src);
return ((struct binop_st*)dst)+1;

case KIND_VARIABLE:
{ struct variable_st* srcvar = src;

int srcnamlen = srcvar->namelen;
memcpy(dst, src, sizeof(struct variable_st)+srcnamlen);
if (srcnamlen & (sizeof(void*)-1)) {
/*round up name length to word*/
srcnamlen |= (sizeof(void*)-1); srcnamelen++;

}
return ((struct variable_st*)dst)->name + srcnamlen;

}
}

}

void* minor_scan(void*ptr) {
switch (*(short*)ptr) {
case KIND_BINOP:
QISHGC_MINOR_UPDATE(((struct binop_st*)ptr)->left);
QISHGC_MINOR_UPDATE(((struct binop_st*)ptr)->right);
return ((struct binop_st*)ptr)+1;

21

3.5 Using Qish in C++ code 3 THE GARBAGE COLLECTOR

case KIND_VARIABLE:
{ struct variable_st* var = ptr;

int namlen = var->namelen;
QISHGC_MINOR_UPDATE(var->value);
if (namlen & (sizeof(void*)-1)) {
/*round up name length to word*/
namlen |= (sizeof(void*)-1); namelen++;

}
return var->name + srcnamlen;

}
}

}

The full scan routine would be similar (using QISHGC FULL UPDATE).
Since there are no fixed object you have to provide a dummy fixed scanning

routine which just calls abort

3.5 Using Qish in C++ code

I just give very few hints on using Qish in C++ code:

1. no implicit or explicit use of this. Since it is not possible to declare the
argument this to be a volatile pointer, you should not use it (either explic-
itly as in this->method(foo) or this-> field or implicitly as in
method(foo) or field). Instead, copy this to a local pointer, using
it explicitly. This stylistical constraint is annoying.

2. no multiple inheritance. Since Qish does not support interior pointer, you
cannot use multiple inheritance.

3. Have a tree and not a forest of classes by defining a common superclass to
all your GC-ed objects. The virtual table pointer is usually the first word of
such objects.

I would suggest to avoid using C++ with Qish on new code. Instead consider
using other programming languages like Ocaml, CommonLisp, Java.

3.6 Advanced application explicit forwarding.

Advanced applications using Qish (and understanding quite well its internal pro-
cessing) may explicitly forward pointers in the application code. Use this (exper-
imental) feature with caution.

22

4 A TINY BENCHMARK

Explicit forwarding could be useful when you want every pointer to a (garbage-
collected and allocated) address α to be replaced by a fixed β. A typical appli-
cation could be to grow existing values, dynamically change the class (hence the
size) of an object, etc...

An application can for such an explicit forwarding with the macro call QISH EXPLICIT FORWARD(alpha,beta).
Then the garbage collector will replace any18 pointer to alpha than its scans with
beta.

If an application use this explicit forwarding, it has to follow (explicitly in
application code) any potential such pointer with the QISH FOLLOW FORWARD
macro which should be applied to every pointer (either argument, or local after as-
signment). If the pointer is never a tagged integer, you may call QISH FOLLOW FORWARD PTR
directly. If you statically know that only some pointers may have been explic-
itly forwarded by QISH EXPLICIT FORWARD you mayy (at your own risk) call
QISH FOLLOW FORWARD only for such pointers.

Refer to the include/qish.h file for definitions of these macros.
Explicit application forwarding is an experimental untested feature. Use it at

your own risk! If you happens to use it, be kind enough to explain me why.

4 A tiny benchmark

A tiny benchmark (adapted from the GCbench.c by H.Boehm, J.Ellics, P.Kovac,
W.Clinger, et al) is ported to qish.

4.1 benchmark results

It is the file GCBench.c (where we changed the allocate sized to 4 times the
original) in our lib/ subdirectory (where you can run all 3 benches with make
OPTIMFLAGS=’-O2 -DNDEBUG’ clean lib bench. The same file GCBench.c
compiles with Qish GC, with Boehm’s GC, and with manual malloc and free ac-
cording to the setting of preprocessor flags QISH for Qish, GC for Boehm, and no
flags for malloc and free. (Times have been measured with release 0.3 of Qish).

• Qish GC (standard birth size of 8Mbytes): CPU 9.160 user + 4.510 system
= 13.670 total time (sec); done 131 minor and 16 full garbage collections

• Boehm’s GC: CPU 18.570 user + 0.310 system = 18.880 total time (sec);
Completed 42 collections

18So all occurrences are replaced only after a major full garbage collection; after a minor col-
lection only some pointers are replaced!

23

4.1 benchmark results 4 A TINY BENCHMARK

• explicit malloc and free: CPU 24.810 user + 2.810 system = 27.620 total
time (sec)

• Qish GC with the birth size reduced to 4 Mbytes made with make OPTIMFLAGS=’-O2
-DNDEBUG -DMIN BIRTH SIZE=4194304’ clean lib benchqish:
CPU 13.810 user + 6.350 system = 20.160 total time (sec); Qish done 257
minor and 39 full garbage collections

• Qish GC with the birth size increased to 16Mbytes: CPU 6.900 user + 4.350
system = 11.250 total time (sec) Qish done 67 minor and 6 full garbage
collections

• Qish GC with the birth size increased to 32Mbytes (probably not significant,
since it is similar to the live object size): CPU 5.920 user + 3.700 system =
9.620 total time (sec) Qish done 34 minor and 2 full garbage collections

• Boehm’s GC with holes make OPTIMFLAGS=’-O2 -DNDEBUG -DHOLES’
clean lib bench, so for every used node allocated, an extra useless
(dead) node is also allocated: CPU 43.220 user + 0.380 system = 43.600
total time (sec) Completed 72 collections

• Qish GC with holes (and standard birth size of 8Mbytes): CPU 12.490 user
+ 7.380 system = 19.870 total time (sec) Qish done 197 minor and 23 full
garbage collections

• Qish GC with holes and increased birth size of 16Mbytes: CPU 9.560 user
+ 6.460 system = 16.020 total time (sec) Qish done 99 minor and 10 full
garbage collections

• Qish GC with holes and small birth size of 4Mbytes: CPU 17.530 user +
8.500 system = 26.030 total time (sec) Qish done 389 minor and 52 full
garbage collections

Obviously, this small benchmark does not prove much. But Qish is not too
bad, even w.r.t. the famous Boehm’s (et al.) conservative (and quite mature)
garbage collector.

Explicit bug-prone manual memory management with the infamous free
routine is not only harder to code, but seems even slower than all the other au-
tomatic memory management techniques.

Qish is highly sensitive to the birth size. This is expected (since a GC is
trigerred only when the birth region is full). Qish requires lot of system calls,
because it does mmap-ing at every GC. Perhaps we could improve it by caching
memory zones... (but the GC requires zero-ed memory). Qish tuning can be done

24

4.2 Tuning Qish 4 A TINY BENCHMARK

by carefully changing some compile-time constants (notably MIN BIRTH SIZE
MAX BIRTH SIZE FULL GC PERIOD) at the start of file lib/qigc.c.

Qish works well with holes (because it compact them) and is designed with
allocation of small short lived temporary objects in mind (which may favor some
“functional” style of coding).

It would be very interesting to port Qish to an existing major GC-ed applica-
tion (like guile, some application using Boehm’s GC, or even emacs) but I have
not enough time for this. I am willing to help any person which wants to do so.

Qish is designed to be used for C code generators.

4.2 Tuning Qish

To optimize Qish for your needs you could :

• use the usual trick of allocating several objects simultanously (in one single
qish allocate for all of them).

• explicitly invoke qish garbagecollect when needed (e.g. at start of
a topmost loop...).

• set the number QISH NB ROOTS of variable roots (ie the size of the qish roots
global array) in include/qish.h to your needs. Leave it at most to a
few hundred or dozen.

• change the MIN BIRTH SIZE and MAX BIRTH SIZE and FULL GC THRESHOLD
in lib/qigc.c. The minimal birth size is a sensitive number (8 megabytes
by default). I believe it should be at least half a megabyte (and at most a
fraction, e.g. the tenth, of your available RAM). The maximal birth size
limits the maximal size of allocated objects.

• change the QISH MAXNBCONST number (65536) to a power of two (at
least 1024). It is the maximal number of global constant pointers (for
QISH GLOBCONST)

• if your plateform has enough registers (this is false for x86 with 6 usable
registers only) you could (with GCC) reserve global registers for qishgc_birth_cur
and qishgc_birth_storeptrglobal variables (in include/qish.h).

25

5 TODO LIST (MULTI-THREADING?)

5 ToDo list (multi-threading?)

Some people expressed the wish of making Qish multi-threaded (using Posix
threads ie <pthread.h>), in the sense of having a few threads19 concurrently
allocating garbage collected objects. This could be doable with a “stop the world”
strategy: when a thread requires a (major) collection it has to stop all other threads,
but minor collections eremains local to threads (and sending objects between
threads requiring some special precautions). This approach works only for a few
(at most a dozen) threads.

The problem with this approach is that the current allocation pointer qishgc birth cur
has to become a thread-local variable. And there is no standard mechanism pro-
viding them very quickly: I believe that the standard pthread getspecific
function (which would have to be called at each allocation with qish allocate
- even those which do not trigger any collection) would significantly slow up this
runtime.

I am not very fluent with multi-threading applications, and I don’t have any
biprocessor machine at home yet (experimentally a biprocessor machine is almost
required to test multithreading applications).

People having access to 64 bits machines could try to compile Qish on these.
Contributions are welcome!

Comments on this are welcome.

19If you need multi-threaded capable garbage collection, I suggest using Hans Boehm’s collec-
tor.

26

	Short overview
	Requirements
	The garbage collector
	Introductory examples
	Data structure of objects
	required coding practices
	No interior pointers
	No multi-threading
	Limited global data
	Pointers are volatile
	Indicate arguments and locals to the GC
	No composition of function calls
	Complete allocation
	Notification of updates (write barrier)
	Optional explicit garbage collection
	Exception handling
	Utility routines

	Mandatory routines to the GC
	Copying function qish_gc_copy_p
	Minor scan of a movable object qish_minor_scan_p
	Full scan of a movable object qish_full_scan_p
	Full scan of a fixed object qish_fixed_scan_p

	Using Qish in C++ code
	Advanced application explicit forwarding.

	A tiny benchmark
	benchmark results
	Tuning Qish

	ToDo list (multi-threading?)

