
Multi-Stage Construction of a Global Static Analyzer
(in GLOBALGCC project)

Basile Starynkevitch
CEA LIST

(Software Reliability Lab.)
basile@starynkevitch.net or basile.starynkevitch@cea.fr

Abstract

We describe ongoing work about global static
analysis for GCC4 within the GlobalGCC Eu-
ropean project, funded thru the ITEA Pro-
gramme.

The aim of this work is to provide global
(whole program) static analysis, notably based
upon abstract interpretation and knowledge
based techniques, within the GCC compiler,
targeted for analysis of medium sized C, For-
tran or C++ programs. This will facilitate
the adoption of GCC in the area of safety-
critical software development, by providing
features found in a few expensive commercial
tools (PolySpace, AbsInt) or research proto-
types (Astree). In this perspective, the em-
phasis is on the quality of analysis, at the ex-
pense of much bigger compilation times, with-
out sacrificing scalability. Such analysis can
be used for several purposes: statically com-
pute some interesting properties of the program
at most control points (possibly reporting them
the user); provide clever, contextual, warn-
ings about possible hazards in the user program
(null pointer dereferences, zero divide, conver-
sion loss, out of bound array access, ...) while
avoiding too much false alarms; enable addi-
tional optimisations, like conditional contex-

tual constant folding, C++ method call devir-
tualization, an other contextual optimizations.

The compiler’s rich program manipulation in-
frastructure facilitates the development of these
advanced analysis capabilities.

To facilitate the development high-level se-
mantical analyses, a domain specific language
has been developped, and is translated (thru
C) into dynamically loaded code. It uses the
Parma Polyhedra Library (also used in the
GRAPHITE project) for relational analysis on
scalars and gives more expressivity to develop
analaysis algorithms. It permits multi-staged
generation of the specific analysis tailored to
the analyzed source code. Presenting this work
at the 2007 GCC summit will allow us to stress
the importance of all outputs of the compiler,
not only object-code, and to expose the com-
plementary contribution of static analyses and
dynamic/instrumentation approaches like mud-
flap.

Warning

This paper describes some work in progress1.
A more up to date report, and a snap-

1Within the GlobalGCC project, ITEA [Information
Technology for European Advancement] programme,

1

shot of the source code, should be avail-
able on the author’s web page http://
starynkevitch.net/Basile/ on july
2007.

1 Interest and Issues of Global
Static Analysis

The current GCC compiler2 is mostly used to
transform a source code file into some object
form, containing suitably represented processor
instructions. For this very common use, per-
formance of the compiler and of the generated
code are expected (but are sometimes in ten-
sion, requiring carefully tuned trade-offs).

However, GCC also provides an interesting in-
frastructure and internal code representations,
usable for other purposes. In particular, static
code analysis (deep inspection and processing
of an analyzed source program, without paying
much attention to machine code, or to its exe-
cution) is also possible.

1.1 Static analysis overview

Static analysis tools are already used by some
software industries, notably in safety-critical
(aerospace, automotive, nuclear, medical, ...)
applications. Success of commercial (but ex-
pensive) tools (like Absint, Polyspace, ...)3

show that some niche market exists for these
techniques. Research prototypes like Astrée[6,

partly funded by MINEFI (French Ministery of Econ-
omy, Finance and Industry) and others public authorities.
Like in every GCC contribution, code copyright has been
transfered to FSF

2E.g. the trunk branch of SVN rev.124285.
3See http://www.absint.com/ and

http://www.polyspace.com/ and http:
//www.mathworks.com/.

7] or TWO[9] suggest that it should be worth-
while to incorporate some of their ideas into
GCC. Most such tools are significantly slower
than ordinary compilers, because they usually
process a whole program source, using sophis-
ticated (but expensive) representations, but are
still used profitably. Safer dialects of C have
been proposed[10, 13].

Static analysers are not a panacea: they com-
pute approximate properties4 on the source
code (such as properties or relations on the val-
ues of the program variables during any of its
execution), but they should always terminate
their analysis, even for buggy analyzed pro-
grams.

Of course, many algorithms used in tradi-
tional optimized compilation can be viewed as
a particular form of static analysis (usually re-
stricted to a single block, function or compila-
tion unit). And gcc 4 also permit (in a lim-
ited way) whole program compilation thru the
-fwhole-program compile flag5. The Link
Time Optimization effort within GCC also tar-
gets whole program optimization, by encod-
ing some GIMPLE related internal representa-
tion in DWARF debugging format inside object
files.

1.2 The GLOBALGCC project

Because of this interest in static analysis and in
the free GNU Compiler Collection, a consor-
tium of european industial corporations and re-
search labs proposed the GLOBALGCC project6

which aims to extend the GCC compiler (on

4Always computing exact properties would solve the
halting problem, which is impossible.

5A Google code search reveals that this flag is almost
never used.

6See http://gcc.gnu.org/ml/gcc/
2006-10/msg00676.html and http:
//ggcc.info/

2

Unix or Linux hosts) using global static anal-
ysis techniques, lead by Mandriva. The
static analysis will work on the GIMPLE and
GIMPLE/SSA7[15] internal representation[s]
of GCC (hence re-using all existing GCC front-
ends). It is global, because a whole source
program (of several compilation units) should
be processed. Such static analysis techniques
should enable:

1. Global program-wide optimisation, be-
cause the properties inferred at a given call
site may be propagated to avoid useless
computations in the program; for example
if on a given call site and calling context
the static analyser determined that some
pointer is not null, this information can be
used to optimise further on, particularize
inlinings, etc...

2. Hazard detections, that are warnings (for
the developer using GLOBALGCC) about
possible threats like: if a function f()
was called by g() called by h(x) with
x>0 then at foo.c:456 there is a possi-
ble zero-divide fault. The challenge is to
to reduce the number of (stricto sensu un-
avoidable) false positive alarms.

3. Later, coding rules validation can be con-
sidered. This means defining a formalism
to express some coding rules, and use the
statically analyzed properties to partly val-
idate these rules.

It is expected that such static analysis tech-
niques should be computationally expensive
(more than ten times slower than a traditional,
-O3 optimized, compilation build of the ana-
lyzed program). The mygcc project8 provides

7GIMPLE is the middle-end, source-language and
target-system neutral, internal representations of (nor-
malized) trees within GCC4; GIMPLE/SSA is its Single
Static Assigment form.

8See http://mygcc.free.fr/

a complementary, but very useful, alternative:
simple, quick, but useful static analysis based
upon sophisticated pattern matching [18]. The
static analysis considered here put emphasis on
quality of analysis, at the cost of much bigger
compilation (i.e. analysis) time.

1.3 Abstract interpreters

Abstract interpretation (pioneered by P. and R.
Cousot) [5, 4] provides a conceptual framework
for designing such static analyzers. The guid-
ing idea is to abstract on program variables’
values with lattices (e.g. considering intervals
instead of numbers or their relations e.g. linear
inequalities) and to “interpret” on every control
flow of the program. At some control points,
abstract values are over- approximated. Such
narrowings (and widenings)9 ensure that the
analysis always terminate (hence avoiding long
loops in the analyzer, at the expense of preci-
sion) : the computed abstract values can be >
(top, representing any value), ⊥ (bottom, im-
possible or unreachable) or other elements of
the lattice.

Abstract interpreters10 have rather complex al-
gorithmic behavior (like concrete interpreters) :
it is not easy to predict if a given abstract value
will be further used, or what is the exact time or
space complexity of the analysis. This contrasts
with most of current GCC optimization passes,
which mostly update or rewrite GIMPLE trees,
and whose other data has a life internal to the
pass.

Lattices for simple (e.g. numerical scalar)
variables in simple (e.g. imperative like,

9We view narrowing and widening operations as nec-
essary heuristics to ensure that analysis terminate rather
quickly, even when the analyzed program loops... Sim-
ple reflexive or introspective techniques could be useful
here.

10i.e. abstract interpretation based static analyzers

3

without calls) mini-languages routinely exist.
Two free lattice libraries have been consid-
ered: APRON 11 and the Parma Polyhedra Li-
brary (PPL) 12 [2, 1], which was prefered (it
is also used in the Graphite branch of GCC).
More complex analyzers and lattices should be
built above such primitives lattices to abstract
other control structures and other data, in par-
ticular pointers to heap data structures[12] or
arrays[17]. The result of an abstract interpre-
tation is conceptually, at every control point
of the analyzed program, an abstract value of
program variables; for simple integer programs
with variables v1 . . .vn, it could be an interval
vk ∈ Ik = [ak;bk] for each variable vk, or a set of
linear inequalities (i.e. polyhedra) ∑k ci,kvk ≤ li
between variables, etc... For real programs,
pointers or data structures are also abstracted
by shapes or graphs..

The result ρ of an abstract interpretation de-
pends upon the analyzed program π , the ini-
tial conditions α and of course the lattice :
ρ = φ(π,α). ρ is a (big) decoration of the
syntax tree. Since such abstract interpretations
are costly, and because the analyzed program
is fixed for a given interpretation, it could be
worthwhile to specialize (part of) the analysis
for the given program. More pedantically, it
may be interesting to partially evaluate φ(π,•).
Pragmatically, development of abstract inter-
preters should take profit of multi-staged or
meta-programming techniques, i.e. dynamic
generation of specialized code during analysis,
possibly with introspection[14] to guide widen-
ing. The intuition is to generate specialized
code which does the analysis of the only par-
ticular program which is analyzed.

However, care should be taken to avoid dynam-
ically generating an analyzing code much big-

11http://apron.cri.ensmp.fr/ with LGPL
license, wrapping other libraries.

12http://www.cs.unipr.it/ppl/ with GPL
license, self-contained.

ger than the analyzed source program. Prac-
tically, a domain specific lispy like language
capable of runtime code generation, is deemed
useful.

2 A Multi-stagable run-time infras-
tructure

A run-time infrastructure has been developped
(above existing GCC code) to take into account
the specific needs of abstract interpreters for
static analysis, as considered in §1.3 above. It is
tentatively called basilys (base for abstract in-
terpretative analysis).

2.1 Compiler Probe facility

Since our static analysis are expected to run
much longer than a traditionnal compilation,
and because it should produce a lot of inter-
mediate results (abstract values at many con-
trol points) which are useful both to the expert
user of the analyzer and to its developers. To
avoid just generating huge dump files (only us-
able after analysis ended), a compiler probe fa-
cility has been proposed13 and could be use-
ful to other GCC developers. It works only on
some Unix host systems (e.g. Linux14), by (op-
tionally - at configuration and at compilation
time) running a separate process (the probe,
with a GTK based sample graphical imple-
mentation in contrib/simple-probe.c)
which communicate with the GCC process on
asynchronous channels (pipes) using textual
protocols (requests from probe to compiler,
replies from compiler to probe). On the GCC

13See patch http://gcc.gnu.org/ml/
gcc-patches/2007-01/msg01278.html

14It needs SIGIO, F_SETOWN, O_NONBLOCK and
select.

4

compiler side, frequent calls (dozens per sec-
ond) to comprobe_check("reason-msg")

are expected. This is a macro which expands
to the test of comprobe_interrupted, an al-
most always zeroed volatile variable. Should a
message come from the probe, the comprobe_
interrupted flag becomes set, and then
comprobe_handle_probe is called and han-
dles the incoming requests, sometimes by send-
ing appropriate reply messages to the probe.
Above that dirty trick, information points (in
the compiled source program) are managed and
display routines are callable from them on re-
quest, to show only information pertinent to (or
near of) a given control point.

Therefore, the compiler probe enables giving
feedback to the user during our static analysis
(i.e. compilation). It is implemented in more
than 3KLOC (thousand of source code lines).

2.2 Dynamic run-time

Given the complex usage pattern of ab-
stract values15 automatic memory management
techiques are required (almost every abstract
interpreter implementation we know of uses
garbage collection techniques[11]).

The current GCC compiler provide a limited
form of garbage collection (frowned upon by
some developers). The GGC garbage collec-
tor is precise, of mark and sweep kind, and
deals only with explicitly declared16 data struc-
tures and pointer (global or static) variables, but
does not manage local pointers on the compiler
call stack, which is lost unless saved in globals;
it should be explicitly called. This is accept-
able for GGC purpose of managing rarely dy-
ing data (mostly GIMPLE trees), shared across

15It would be very difficult for the developer of an ab-
stract interpreter to know when to free an abstract value

16Thru the GTY marker used by the gengtype gen-
erator.

several passes. GGC collection needs to scan
all the heap, and works better when most of the
data remains alive.

Abstract interpreters are a different kind of
beast: they allocate a lot of data (the abstract
values) and most of it is temporary and quickly
fade away (but is difficult to delete explicitly).
For such scenarii, other GC schemes are bet-
ter suited, such as generational copying collec-
tors17, detailed below.

Hence, a copying generational garbage collec-
tor has been implemented for our abstract in-
terpreters. It is copying generational for young
data, but mark and sweep for old data. It works
by allocating (with a quick current pointer in-
crementation) inside a birth zone (typically
4Mwords), without any additional space over-
head. When this birth zone is full, a minor
copying collection occurs: it scans all the lo-
cal pointer variables on the stack (and some
globals) and copy the live data18 into the GGC
managed heap. Then, the entire birth zone
can be freed at once (without spending time
on each individual dead value) and suitably
quickly reallocated. When a suitable thresh-
old (e.g. 64Mwords) of cumulated allocations
occurred in the birth region, a full (or major)
garbage collection is triggered: all the local
pointers are saved into some GGC data, and the
GGC mark and sweep collector is called. Up-
dated pointers (i.e. a write barrier) from new to
old are managed on a store list (on the other end
of birth region) with a small caching hashtable
(for frequently touched pointers).

Generational garbage collectors are uncommon
in (portable) C libraries, because they require
(for GC-ed data and pointers) a specific, cum-
bersome, coding style:

17Like in most efficient implementations of functional
programming languages - Ocaml, Haskell, ...

18Copying GCs are also rumored to improve data
cache locality.

5

• allocation of objects is usually fast
(pointer incrementation and test) but may
trigger a garbage collection.

• every local pointer should be explicitly
known. Our local pointers are all inside
a call frame structure declared nearly
as struct frame_st {unsigned

nbvar; struct closure_st*
clos; struct frame_st* prev;

void* varp[nbvar];} curfra;

where nbvar is the number of local
pointers variables (stored in varp), clos
points to the current closure, and prev
chains to the previous frame.

• each function should have an explicit pro-
logue and epilogue to manage the singly
linked list19 of such frames, which should
be initially cleared.

• no nested function calls are permit-
ted: α = foo(β, bar(γ));
should become τ = bar(γ); α

= foo(β, τ);, concretely like
curfra.varp[6] = foo(curfra.

varp[3]); curfra.

varp[1] = foo(curfra.varp[2]

, curfra.varp[6]);

• every update inside such a value (exclud-
ing initialization) should be notified (write
barrier), and can trigger a minor garbage
collection, which can move every local
pointer.

• special care has to be taken for values
which have to be individually destroyed
(e.g. when containing PPL pointers). Ex-
plicit young and old lists of such special
values are maintained, the GTY(mark_
hook) marker is used, and they are ex-
plicitly destroyed in our garbage collector.

19Inspecting the list of call frames provide a simple
way of reflexive introspection, notably thru the clos
fields.

• a union of all our garbage collected values
should be known, and each value should
be discriminable inside.

Above constraints are easier to follow in gener-
ated code than in human-written one.

Concretely, our basilys (low-level) memory
values starts each with a discriminating pointer,
and are one of:

• objects (see below), used for discrimi-
nants, high-level abstract values, analyzer
“source” code, etc...

• single or multiple boxes (of basilys point-
ers),

• boxed GCC stuff, like trees, edges,
basic blocks, etc... For example
struct basilystree_st GTY(())

{ basilysobject_ptr_t discr;

tree val; };

• (immutable) strings and (updatable) string
buffers

• analyser’s closures and routines

• pairs and triples (for lists)

• boxed (long) integers

• hash tables (or object maps) whose keys
are objects, and values are basilys pointers

• hash tables with tree (resp. edge, basic
blocks, ...) keys (tree maps, ...); these are
used to associate abstract values to tree
control points.

• special (destroyable) values for PPL, etc...

Our object values contain a discriminating
class, an hashcode, a number, a length, and the
object’s variable (i.e. instance slots) array:

struct basilysobject_st GTY(()) {
basilysobject_ptr_t obj_class;

6

unsigned obj_hash;

unsigned short obj_num, obj_len;

#define object_magic obj_num

basilys_ptr_t∗
GTY((length("%h.obj_len")))

obj_vartab;};};

Each value starts with a discriminant (discr
or obj_class in objects). This is a pointer to
an object, whose obj_num is used as a discrim-
inating magic number, in particular for GGC
marking (on full collections). Hence the union
of our values is declared as:

typedef union basilys_un* basilys_ptr_t;
union basilys_un

GTY ((desc("%0.u_discr->object_magic"))) {
basilysobject_ptr_t

GTY((skip)) u_discr;
struct basilysobject_st

GTY((tag("OBMAG_OBJECT"))) u_object;
struct basilysbox_st

GTY((tag("OBMAG_BOX"))) u_box;
struct basilystree_st

GTY((tag("OBMAG_TREE"))) u_tree;
/* etc.... */

};

It is expected that these values (runtime types)
are sufficient building bricks for most analyz-
ers. Adding new such values is quite easy (i.e.
for other GCC data like loops).

We have also considered using an existing run-
time (e.g. Ocaml or MetaOcaml20, Python,
Guile, Ruby, SBCL, ...) but this is not practi-
cal, because the current GCC interface (GIM-
PLE tree based) is quite low level, needs to be
adressed in C (thru numerous macros), avoid-
ing the overhead of generic runtime machiner-
ies21; the practical way to efficiently inter-
face all of GCC internals is indeed to gener-
ate specialized code, tightly dependent upon
GCC data structures. Hence using a foreign

20See http://metaocaml.org/. It would have
been very sexy if we could in particular consisely write
Meta-Ocaml like patterns for matching GCC trees, but
runtime considerations make that impossible.

21It would be very inefficient to access the son of a
GIMPLE tree by some complex routine call.

runtime would create a significant impedance
mismatch.

Dynamic runtime code generation is possi-
ble by generating (during static analysis) a C
source file, compiling it as a shared object,
and dynamically loading it -thru the libtool
dynamic loader (a portable wrapper around
dlopen). Such shared objects are never re-
leased (no dlclose).

2.3 Basilys objects and closures

Our runtime offers lisp-y closures, which con-
tain a routine value and the closed values.
A closure is applied to a sequence of argu-
ments which can be basilys pointers or (plain
unboxed) scalars (e.g. long integers, GCC
trees, ...). This application produces a pri-
mary result pointer, and secondary results22 (ei-
ther pointers or unboxed scalars). The routine
value contains the C code pointer and any ad-
ditional value the code depends upon23. The
called C routine gets as C arguments the clo-
sure, the first two arguments, and the other ar-
guments and results (as arrays of unions) with
a descriptive string.

Basilys objects are organized à la ObjVlisp
[3], with a single inheritance, meta-class based
organization providing mono-dispatched meth-
ods and quick is instance of and is subclass of
tests. Classes, slots, selectors, fields are them-
selves objects. Discriminants of non-object
values (like boxed integers, single or multiple
boxes, boxed trees, ...) are also objects, and can
dispatch messages. Therefore, messages can be
sent to any basilys value. Every discriminant or
class contains a dictionnary of methods (or nil)

22secondary results, like in Common Lisp, may be ig-
nored, but are useful, e.g. to return some abstract value
with an additional item indicating its completeness.

23E.g. if the code contains the hash code of some ob-
jects, these objects should be kept in the routine

7

and a sending closure (or nil). Message dis-
patch of selector σ and reciever ρ with addi-
tional arguments α1 . . . is done as follow:

1. get the discriminant (or class) δ of ρ

2. get the method dictionnary µ in δ

3. find (if any) the closure κ associated to σ

in µ , if it is a closure, go to step 7

4. get the sending closure ν in δ , if any, oth-
erwise go to step 6

5. apply the sending closure ν to (ρ,σ), this
should give a closure into κ (otherwise er-
ror)24, and go to 7

6. without closure κ or sending closure ν , if
the reciever ρ is an object, get the parent
class in δ and put it in δ an repeat step 2.
If the reciever ρ is not an object (but a non
object value, like a boxed tree, etc...) we
are stuck in error.

7. a closure κ has been found for the method
send; we apply it to (ρ,α1 . . .) hence get-
ting the result of the send

Our core classes include ROOT the topmost
class of all objects, PROPED subclass of (noted
<) ROOT with a single slot for arbitrary proper-
ties (like in Javascript), NAMED < PROPED for
named objects, DISCR < NAMED for discrimi-
nants, CLASS < DISCR for classes, FIELD <
NAMED for fields, and many others (like SEXP
for basilys source expression).

The basilys runtime is implemented in more
than 6KLOC, and permits the development of a
small lispy like compiled domain specific lan-
guage.

24It is a hook to implement more dynamic situations,
e.g. handling error like unknown selectors, or just gener-
ating a particular code on demand.

3 A compiled domain-specific lan-
guage for analyzers

As suggested before, a domain-specific lan-
guage is useful to express more briefly sophis-
ticated analysing algorithms, with an internal
representation suited for meta-programming.
Lisp[16] like languages fit the bill. Hence,
the compiled domain-specific Basilys language
is a Lisp-like langage, somehow similar to
Scheme (with the important restriction that tail-
recursion is not supported, because it is non-
trivial to compile it to portable C for our run-
time.). The topmost internal representations
are organized with s-expressions, instances of
SEXP (containing an optional source location,
an operator, a list of arguments).

Most of the data handled by Basilys are basilys
values (i.e. pointers) described in §2.2 and
§2.3, but handling of non-values (like unboxed
raw integers, or raw trees) is also required.

3.1 low level syntax and informal seman-
tics

Assuming some familiarity with Lisp or
Scheme, we illustrate our language by giv-
ing a few examples. Conceptually, like ev-
ery Lisp, it is an evaluation based language
of expressions. In practice, it is compiled
(by generating C code). The examples sup-
pose that two and three are each bound to a
boxed integer containing 2 and 3, stored in the
current frame as curfra.varp[ITWO] and
curfra.varp[ITHREE] where ITWO and
ITHREE are in reality some generated indexes,
and that u is bound to an unboxed machine long
integer 1.

Constants, like 1, "a string", or (existing)
named objects like #NAMED denote values25

25Hence 1 refers to a boxed integer basilys value.

8

and evaluate to themselves. #NIL is the nil
pointer value (also false).

Some keywords, starting with a colon, are use-
ful in particular for type indications like :int
(machine long unboxed integer) :tree (raw
GCC tree-s), etc.

(+ two 3) evaluates to a boxed integer 5,
but compiles to unboxing two and boxing the
result, something like

long t22

= basilys_get_int(

curfra.varp[ITWO]);

long t23 = ((t22) + (3));

curfra.varp[IRES] =

basilysgc_new_int(GLOB_DISCR_INT,

t23);

We need basic Lisp control flow primitives,
e.g. (progn e1 . . . en) for sequential (side-
effecting) evaluations, (if c t e) for con-
ditionals, (while c e1 . . . en) for while
loops, etc.

An assignment (setq v e) sets variable v
(either local in the current frame, or closed, in
the current closure) to value of e.

Binding let constructs are like in Scheme
or Lisp: (let ((v1 e1) (v2 e2) · · ·
(vn en)) b1 . . . bk) locally binds each vi
to value of ei en sequentially evaluates the b j.
However, non-pointers variables are useful, so
we admit typed bindings (τi vi en) where
τi is one of :int :tree etc... For example
(let ((:int x (+ u 2))) (* x
3)) don’t do boxing or unboxing of integers.
An flet construct (Lisp syntax, semantically
similar to Scheme’s letrec) permit local
definition of (perhaps co-recursive) local
functions.

Formal arguments lambda lists are as usual :
(lambda (v1 . . . vn) e1 . . . ek) defines

an anonymous function with n formal argu-
ments vi whose body is the sequence of e j. We
also admit typed formals (τi vi)

Secondary results of a multi-valued ap-
plication26 are bound with (mlet bind-
ings applied-fun (arguments ...) bod-
ies ...); results are returned with result. For
example

(mlet (f1 f2)
(lambda (f x)

(result (f x) (f (f x))))
(g k)
(list f1 f2))

returns the list made by applying once and
twice g to some k.

We need to be able to express that our + is a
primitive taking two plain (long) integer argu-
ments x and y and gives an integer, and give its
expansion as a C code chunk: with

(define-primitive +
((:int x) (:int y))
:int
"((" x ")+(" y "))")

Progressively, all required GCC notations (e.g.
defined in GCC tree.h file), and all (ac-
cessing, mutating, side-effecting) operations on
basilys values should be likewise defined as
primitives.

We also need macros, like in Lisp. A macro
is expanded into some s-expr which is in turn
evaluated (actually compiled).

26Like in Common Lisp multiple-value-bind
... and in Scheme call-with-values ...

9

3.2 Modules and their compilations

A module is a sequence of binding definitions
and initializations. A binding exist at com-
pile time and at run time. Binding defini-
tions are mostly defun to define a function, as
(defun f (x) (+ x 23)) or defvar
to define a variable, or defmacro to define a
macro (usable only in other future modules).

A module is compiled into a single C file which
is then (compiled to a shared object and) dy-
namically loaded. This C file contains a set of
static functions for routines, and a single initial-
ization function which build the runtime part of
the module bindings.

Naive compilation of such a Lispy language to
C is pretty standard technology27, implemented
by a sequence of usual transformations like:

1. macro expansion28

2. normalization, e.g. expanding
(f (g x) y 1) into some inter-
nal equivalent of (let ((φ (g x)))
(f φ y 1)) where φ is fresh

3. constructing the set of closed variables

4. allocating slots in the call frame

5. expanding to simple C code chunks

6. etc...

Once a module has been translated to C, it can
be compiled to a shared object which is then
loaded with lt_dlopenext (and won’t be
unloaded).

27Implementation of the Basilys compiler has started
while this paper is written in april 2007.

28Actually, even core languages feature like if or
let are implemented as builtin macros expanding to
some first internal representations.

It should be emphasized that dynamic code
generation, (runtime) compilation to C, and
a generational collector all work well to-
gether: Meta-programming requires some dy-
namic code generation, a generational collector
is uneasy to use without automatic generation
of C code using it, and dynamic code genera-
tion is portably possible thru C. Of course, all
this has a cost overhead, but given that the anal-
ysis we are considering are costly, such an over-
head is acceptable. And higher level languages
also inspired GCC [8].

4 future work: implementing static
analyzers

The above sections describe an infrastructure
that we feel is useful to implement sophisti-
cated static analyzers. Future work will include
the following steps.

1. implementing a powerful GCC tree
pattern matcher, essentially thru a big
match-gcc-tree Basilys macro get-
ting the GCC tree to match and e set of
(suitably defined) patterns.

2. implementing a simple static analyser for
mostly numerical functions, using the ex-
isting lattices of PPL.

3. implementing more complex lattices
above for real data structures, using
meta-programming when appropriate.

4. implementing some modular static anal-
ysis; while the analyzers above work
on a single compilation unit or a set
of source files compiled together with
-fwhole-program, it is necessary to
scale to bigger programs to store, in some
persistent way (maybe augmented LTO?)
partial results of analysis to reuse it.

10

References

[1] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaf-
fanella. Precise widening operators for con-
vex polyhedra. Science of Computer Program-
ming, 58(1–2):28–56, 2005.

[2] R. Bagnara, P. M. Hill, and E. Zaffanella.
The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for
the analysis and verification of hardware and
software systems. Quaderno 457, Diparti-
mento di Matematica, Università di Parma,
Italy, 2006. Available at http://www.cs.
unipr.it/Publications/.

[3] Pierre Cointe. Metaclasses are first class: The
ObjVlisp model. In OOPSLA ’87: Conference
proceedings on Object-oriented programming
systems, languages and applications, pages
156–162, New York, NY, USA, 1987. ACM
Press.

[4] P. Cousot and R. Cousot. Abstract interpreta-
tion frameworks. Journal of Logic and Com-
putation, 2(4):511–547, August 1992.

[5] P. Cousot and R. Cousot. Basic Concepts
of Abstract Interpretation, pages 359–366.
Kluwer Academic Publishers, 2004.

[6] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. The
ASTRÉE Analyser. In M. Sagiv, editor, Pro-
ceedings of the European Symposium on Pro-
gramming (ESOP’05), volume 3444 of Lec-
ture Notes in Computer Science, pages 21–
30, Edinburgh, Scotland, April 2–10 2005. c©
Springer.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. Com-
bination of abstractions in the ASTRÉE static
analyzer. In M. Okada and I. Satoh, edi-
tors, Eleventh Annual Asian Computing Sci-
ence Conference (ASIAN’06), pages 1–24,
Tokyo, Japan, LNCS ????, December 6–8
2006. Springer, Berlin. (to appear).

[8] Zdenek Dvorak. Declarative world inspira-
tion. In GCC Developers Summit, pages 25–
36, 2004.

[9] Dominique Guilbaud, Eric Goubault, Anne
Pacalet, Basile Starynkévitch, and Franck
Védrine. A simple abstract interpreter for
threat detection and test case generation.
In WAPATV’01, with ICSE’01, Toronto,
2001. http://www.di.ens.fr/
~goubault/papers/icse01.ps.gz.

[10] Trevor Jim, Greg Morrisett, Dan Grossman,
Michael Hicks, Jam es Cheney, and Yanling
Wang. Cyclone: a safe dialect of C. In
USENIX Annual Technical Conference, pages
275–288, Monterey, CA, june 2002.

[11] Richard Jones and Rafael Lins. Garbage
Collection (algorithms for automatic dynamic
memory management). Number ISBN 0-471-
94148-4. Wiley, 1996.

[12] Antoine Miné. Field-sensitive value analysis
of embedded C programs with union types and
pointer arithmetics. SIGPLAN Not., 41(7):54–
63, 2006.

[13] George C. Necula, Jeremy Condit, Matthew
HArren, and Scott McPeak a nd West-
ley Weimer. CCured: type-safe retrofitting of
legacy software. ACM. Trans. Programming
Languages and Systems, 27(3):477–526, may
2005.

[14] Jacques Pitrat. Implementation of a reflective
system. Future Gener. Comput. Syst., 12(2-
3):235–242, 1996.

[15] Sebastian Pop. The SSA Representa-
tion Framework: Semantics, Analyses
and GCC Implementation. PhD the-
sis, Ecole des Mines de Paris, december
2006. http://www.cri.ensmp.fr/
classement/doc/A-381.pdf.

[16] Christian Queinnec. Lisp in small pieces.
Cambridge University Press, New York, NY,
USA, 1996. Translator-Kathleen Callaway.

11

[17] Arnaud Venet and Guillaume Brat. Precise
and efficient static array bound checking for
large embedded C programs. In PLDI ’04:
Proceedings of the ACM SIGPLAN 2004 con-
ference on Programming language design and
implementation, pages 231–242, New York,
NY, USA, 2004. ACM Press.

[18] Nic Volanschi. A portable compiler-integrated
approach to permanent checking. In ASE ’06:
Proceedings of the 21st IEEE International
Conference on Automated Software Engineer-
ing (ASE’06), pages 103–112, Washington,
DC, USA, 2006. IEEE Computer Society.

12

