
Easily coding a GCC extension with MELT

Basile STARYNKEVITCH
basile@starynkevitch.net (or basile.starynkevitch@cea.fr)

October 26th, 2010, GCC Summit, Ottawa
slides’ svn $Revision: 210 $

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 1 / 87

mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr

Contents

1 Introduction

2 Basic MELT usage and features
running MELT
MELT language syntax
MELT data (things = values + stuff)
connecting GCC to MELT

3 Pattern matching

4 Coding passes in MELT

5 Conclusion and future work

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 2 / 87

Introduction

Table of Contents

1 Introduction

2 Basic MELT usage and features
running MELT
MELT language syntax
MELT data (things = values + stuff)
connecting GCC to MELT

3 Pattern matching

4 Coding passes in MELT

5 Conclusion and future work

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 3 / 87

Introduction

What is MELT? ,

in Debian, melt = command line media player and video editor.
http://www.mltframework.org

for LATEX and Ocaml1 users, Melt (by Romain Bardou) allows you to program
LATEX documents using ocaml
http://melt.forge.ocamlcore.org/

in GCC, MELT is an infrastructure and a domain specific language to
ease development of specific GCC extensions
www.gcc-melt.org and http://gcc.gnu.org/wiki/MELT

This talk is about GCC MELT ,

MELT ≡Middle End Lisp Translator

but MELT is perhaps not only for the middle-end!

1http://caml.inria.fr/
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 4 / 87

http://www.mltframework.org
http://melt.forge.ocamlcore.org/
http://gcc-melt.org/
http://gcc.gnu.org/wiki/MELT
http://caml.inria.fr/

Introduction

The big GCC MELT picture

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 5 / 87

Introduction

About these slides

All opinions are only mine, not of: my employer (CEA, LIST)2, funding
agency (DGCIS)3, my collegues or interns, or the GCC community.
Some slides, in particular this one, are extra slides and may be skipped.
They are pinky, and are marked with a ♠ at the bottom.
These slides are made with Pdf LATEX and beamer4

The MELT examples are really run when producing the slides.
These slides are available (in PDF) on www.gcc-melt.org site and
attached to http://gcc.gnu.org/wiki/MELT

syntax colorization with pygments, minted style,
contrib/pygmentize-melt5 script.

2www-list.cea.fr
3www.industrie.gouv.fr/portail/une/dgcis.html
4using -shell-escape but sadly without Romain Bardou’s Melt
5Some bugs remain in that script, in particular for $var-s in macro-strings, e.g. code chunks

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 6 / 87

http://gcc-melt.org/
http://gcc.gnu.org/wiki/MELT
http://pygments.org/
http://www-list.cea.fr
http://www.industrie.gouv.fr/portail/une/dgcis.html

Introduction

Expected audience

1 using GCC to compile important or big [free] software6

2 able to compile newest GCC from its source code
3 interested in extending or hacking GCC7

4 somehow familiar with GCC internals :
overall organization: driver, front-ends, middle-end, back-ends
major internal representations: Generic/Tree, Gimple, . . .
the many (≈ 250) passes inside GCC
knowledgable of the GCC plugins machinery

5 pragmatically curious about domain specific or scripting languages
6 not necessarily familiar with lisp dialect8, but not scared of parenthesis ,

6MELT is probably overkill to compile hello-world.c
7Or even wanting to contribute to GCC MELT
8But small knoweldge of Scheme, Emacs-Lisp, or Common Lisp can help!

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 7 / 87

Introduction

Questions to the audience

1 who coded a middle-end pass in GCC?
2 who knows some “functional / applicative” language, e.g. Ocaml, Haskell,

Ruby, Python, Scala, Clojure . . . and used anonymous functions
(λ-calculus)?

3 who knows (and did code) lispy languages, i.e. Scheme, Common Lisp,
Emacs Lisp?

4 who knows about pattern matching?
5 who coded a GCC plugin?

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 8 / 87

Introduction

To learn more about GCC . . .

lots of web resources gcc.gnu.org, and help of GCC community
internal GCC documentations and source code availability
major internal representations:

Generic/Tree (AST = abstract syntax tree), see gcc/tree.def and
gcc/tree.h source files, “union” of ≈ 180 cases.
Gimple mostly “3 address” instructions (with Tree operands), see
gcc/gimple.def and gcc/gimple.h files, “union” of ≈ 36 cases.
etc . . .

organization of passes:
used set of passes depends of optimization (and of source code)
see gcc/tree-passes.c file
run gcc -fdump-tree-all
your extension usually add some [your own] passes9

GCC has a garbage collector Ggc [GTY annotations processed by
gengtype] and MELT strongly depends upon it

9Finding what pass to add and where is tricky!
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 9 / 87

http://gcc.gnu.org/

Introduction

When you shouldn’t use MELT

if you cannot have and build plugins on your GCC compiler
if your computer is too small to build GCC10

to develop core GCC (trunk) enhancements (to be pushed inside gcc)

you can’t use MELT since it is a plugin11 and a non-standard language!
but you can prototype your work with MELT and
experiment new ideas with MELT

to patch existing GCC passes:
MELT provide extensions thru the plugins framework, which enable
adding your new passes (but not really modifying existing passes, unless you
replace them).
to add new front-ends or new back-ends to GCC
since it is impossible today (gcc 4.5) thru plugins
for any GCC enhancement not doable with the plugin mechanism
MELT uses extensively the plugin hooks

10You probably will need 2Gbytes of RAM and 3Gbytes of disk to compile MELT generated code
11The MELT infrastructure is itself a plugin, unless you use the MELT branch; but even the MELT

branch is using plugin hooks.
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 10 / 87

Introduction

When and why use MELT

Assuming that you are able to code GCC plugins and learned a bit about MELT
1 to experiment new ideas12 inside GCC

MELT should provide you increased productivity, since it is more
expressive than C programming language

2 to develop specific GCC extensions
MELT enables development of your application-, domain-, corporation-,
project-, specific GCC extensions (which are not economically doable in C
plugins)

With MELT, you can take advantage of the power of GCC for many source
code related activities (and use GCC for source-code related tasks outside of
ordinary compilation).

12e.g. prototyping a new middle-end optimization pass in MELT!
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 11 / 87

Introduction

availability of MELT

MELT is available (but evolving) today!
svn co \
svn://gcc.gnu.org/svn/gcc/branches/melt-branch gcc-melt
also look on gcc-melt.org for releases

1 as a plugin to unchanged gcc-4.513 or to the trunk
2 as a branch [executable program gcc-melt]

code very close14 to gcc trunk (future 4.6). The main differences are
shorter program options e.g. gcc-melt -fmelt-mode=µ instead of
gcc -fplugin-arg-melt-mode=µ

Of course MELT is free software c©FSF and GPLv3 licensed.
Your MELT extensions are possible with the same conditions as GCC plugins. It is preferable to
have free GPLv3 extensions. See http://www.gnu.org/licenses/gcc-exception.html

for details.

13Use the contrib/build-melt-plugin.sh script
14merged with trunk more than weekly

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 12 / 87

http://gcc-melt.org
http://www.gnu.org/licenses/gcc-exception.html

Introduction

MELT implementation details
MELT branch follows closely the trunk (svn repository files =) :

gcc/common.opt, gcc/toplevel.c : patched for -fmelt-α options
gcc/Makefile.in: build and bootstrap15 MELT
gcc/melt-runtime.[ch]: the MELT runtime (GC, module loading, low-level
operations with values)
gcc/melt-make.mk, gcc/melt-module.mk: Makefiles for MELT and
for MELT modules
gcc/melt-predef.ist: list of predefined MELT objects
gcc/melt-run.proto.h: template generating melt-run.h included
by every MELT generated C files.
gcc/melt/warmelt-*.melt: the “bootstrapped” MELT system and
translator
gcc/melt/generated/warmelt-*0.c: corresponding generated C
files
gcc/melt/xtramelt-*.melt: extra MELT files (e.g. MELT operations on
gimple . . . , simple MELT passes)

15“cold” gcc/melt/generated/warmelt*0*.c + gcc/melt/warmelt*.melt→
warmelt*.1*.c + gcc/melt/warmelt*.melt→ warmelt*.2*.c + gcc/melt/warmelt*.melt

→ warmelt*.c
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 13 / 87

Introduction

Hints for building GCC MELT [branch]

same advices as for GCC (in particular build tree 6= source tree)
See http://gcc.gnu.org/install/

same dependencies as for GCC (trunk or 4.5)
the Parma Polyhedra Library PPL (preferably 0.11) should be configure-d
with --enable-interfaces=c at least16

after updating the GCC MELT branch source from svn repository by
running ./contrib/gcc_update in the source tree, don’t forget to
rm -f gcc/melt-runtime.o gcc/warmelt*.[co] in the build tree!

perhaps use ccache carefully from http://ccache.samba.org/

parallel make -j useful for cc1 but useless for melt.encap
(since MELT is generating C files and compiling them just after)

16This is the issue if you get undefined symbols when linking cc1 for symbols like
ppl_io_asprint_Polyhedron

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 14 / 87

http://gcc.gnu.org/install/
http://www.cs.unipr.it/ppl/
http://ccache.samba.org/

Introduction

about my system Debian/Testing/AMD64 or Ubuntu/Maeverick/AMD64

shell run 1

echo $GCCMELTSOURCE $GCCMELTBUILD; gcc-melt -v |& grep ’gcc version’

⇒

/usr/src/Lang/basile-melt-gcc /usr/src/Lang/_Obj_Gcc_Melt
gcc version 4.6.0 20101019 (experimental) [melt-branch revision 165706] (GCC)

shell run 2

grep bash.*configure GCCMELTBUILD/config.status0

⇒

/usr/src/Lang/_Obj_Gcc_Melt/config.status: set X ’/bin/bash’
’/usr/src/Lang/basile-melt-gcc/configure’ ’--program-suffix=-melt’
’--libdir=/usr/local/lib/gcc-melt’ ’--libexecdir=/usr/local/libexec/gcc-melt’
’--with-gxx-include-dir=/usr/local/lib/gcc-melt/include/c++/’
’--with-mpc-include=/usr/local/include’ ’--with-mpc-lib=/usr/local/lib’
’--enable-maintainer-mode’ ’--enable-checks=tree,gc’ ’--disable-bootstrap’
’--disable-multilib’ ’--enable-version-specific-runtime-libs’ ’--enable-plugin’
’CC=gcc’ ’CFLAGS=-O -g’ ’--with-ppl-include-dir=/usr/local/include’
’--with-ppl-lib-dir=/usr/local/lib’ ’--enable-languages=c,c++,lto’
$ac_configure_extra_args --no-create --no-recursionBasile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 15 / 87

Introduction

Hints for building MELT plugin for GCC 4.5

for developing significant MELT extensions, the GCC MELT branch is
preferable (in particular because ENABLE_CHECKING gives you more debug
related features, but is usually disabled in released GCC compilers)

it could be worthwhile to build your gcc-4.5 with --enable-checks for
ease of development of your MELT extensions
running gengtype for plugins is very painful in GCC 4.5. Consider
copying manually contrib/gt-melt-runtime-plugin-4.5.h to
gcc/gt-melt-runtime.h in your plugin build tree.
read INSTALL/README-MELT-PLUGIN

read and run contrib/build-melt-plugin.sh accordingly

please report any bugs about MELT as plugin

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 16 / 87

Introduction

Why use MELT for specific extensions?

MELT is mostly useful for (application-, domain-, industry-, project-)
specific GCC extensions, e.g.

particular warnings or checks, like:
warn when the result of fopen is not tested...
type variadic functions like g_object_set in Gtk

specific optimizations, like fprintf(stdout,...) ⇒ printf(...)

coding rule validation, like In C++, “ensure base classes common to more than
one derived class are virtual” (HICPP 3.3.15). or Every call to
pthread_mutex_lock should be followed by a similar call to
pthread_mutex_unlock in the same block.

source code processing (e.g. aspect oriented programming, retro-engineering,
re-factoring tasks)

Notes:
1 most such extensions are specific and probably don’t belong inside GCC.
2 same arguments go for plugins coded in C; however, MELT is believed to

increase your productivity while coding such extensions.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 17 / 87

Introduction

MELT extensions vs coding plugins in C

MELT(being based on the plugin machinery) permits the same extensions as GCC
plugins coded in C.

C is efficient at execution time, but difficult to use for custom middle-end
processing (C is not an easy language to code compilers or static analyzers)

specific extensions (to be coded in MELT) needed to be coded quickly
MELT has many features tailored to processing of GCC internals

1 automatic memory management (a powerful garbage collector)
2 powerful pattern matching
3 high-level programming styles: object-oriented, functional, applicative,

reflexive abilities, dynamic typing, meta-programming...
4 MELT is very tightly related to GCC internals
5 MELT code is translated to C code17 suited for GCC

gluing an existing scripting language implementation (e.g. Ruby, Python,
Ocaml) into GCC is not realistic (because GCC API is not stable, huge, and not well
defined by C functions.)

17Often, the compilation of that generated C code to a dlopen-ed *.so is the bottleneck.
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 18 / 87

Introduction

MELT garbage collector versus Ggc
MELT GC Ggc18

Design: designed from start in parallel

with the MELT language

added as a crude hack

Manage: MELT values stuff = GTY-ed structures
Based upon: Ggc→ system malloc
Time: O(λ) λ = size of live values O(σ) σ = total memory size

Type: generational, copying precise, mark & sweep
Roots: local variables and static only static GTY-ed data
Invocation: implicitly, when needed between passes only
Implementation: runtime suited for code gen-

erator
quick and dirty hack 19

Suited for: short-lived temporary values quasi-permanent data
Allocation: very quick a non-trivial function call
Usage: in generated C code in hand-written C

The MELT old generation is the Ggc heap, so MELT is compatible with Ggc20. A
minor GC happens after each MELT pass.

18Ggc is the “garbage collector” inside GCC. gcc/ggc*.[ch] and gcc/gengtype*
19the ggc functions & GTY annotations preprocessed by gengtype
20but MELT is not compatible with Pch

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 19 / 87

Introduction

MELT code suitable for its garbage collector

MELT GC requires that every MELT call frame is explicited (as a C struct) in the
generated code, and containing every local thing (e.g. values and GTY-ed data).
Typical C code looks almost like (in gcc/melt-runtime.c)

1 melt_ptr_t meltgc_new_gimple (meltobject_ptr_t discr_p, gimple g)
2 {
3 MELT_ENTERFRAME (2, NULL);
4 #define bgimplev meltfram__.mcfr_varptr[0]
5 #define discrv meltfram__.mcfr_varptr[1]
6 #define object_discrv ((meltobject_ptr_t)(discrv))
7 discrv = (void *) discr_p ? : MELT_PREDEF (DISCR_GIMPLE);
8 if (melt_magic_discr ((melt_ptr_t) discrv) != MELTOBMAG_OBJECT)
9 goto end;

10 if (object_discrv->object_magic != MELTOBMAG_GIMPLE) goto end;
11 bgimplev = meltgc_allocate (sizeof (struct meltgimple_st), 0);
12 ((struct meltgimple_st *) (bgimplev))->discr = discrv;
13 ((struct meltgimple_st *) (bgimplev))->val = g;
14 end:
15 MELT_EXITFRAME ();
16 return (melt_ptr_t) bgimplev;
17 }

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 20 / 87

Introduction

Conventions expected by MELT garbage collector

MELT call frames are declared as struct-ure meltframe__, cleared
and linked to the previous (with MELT_ENTERFRAME);
every C MELT value formal argument should be copied into that frame;
this call frame should be unlinked with MELT_EXITFRAME;
every MELT value should be a local field in its meltframe__;
→ The generated code cannot have xv=f (g (yv), zv); but should
have a unique temporary tmpv= g (yv); xv =f (tmpv, zv);. This
is easier to achieve in generated C code.
the MELT GC can be triggered at every MELT allocation21

updates inside touched MELT values should be signaled (write barrier
meltgc_touch)

21When the allocation birth zone is full, a copying minor GC is triggered. Every live value is
copied out of it, and the birth zone (of e.g. a megaword) can be free-d at once. Sometimes a full
GC occurs by calling ggc_collect just after the minor GC. Minor GCs are forced before
returning inside GCC code, e.g. at end of every GCC pass coded in MELT.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 21 / 87

Introduction

Gory details about MELT garbage collection

the MELT GC handles only MELT values ; GCC stuff (gimple, tree, ...) is
managed by Ggc

“strongly” typed GC: MELT values are handled differently from GCC stuff

explicit local frame allocation using MELT_ENTERFRAME and MELT_EXITFRAME
macros

local frame is meltfram__ with local values acessed thru #define meltfptr

meltfram__.mcfr_varptr etc.

write barrier: updated values should go thru meltgc_touch.

coding in hand-written C for MELT is somehow painful

but almost all the C code is generated

the only way to allocate MELT values is meltgc_allocate, which may call
melt_garbcoll (which sometimes calls ggc_collect)

MELT GC is tunable thru parameters melt-minor-zone,
melt-full-threshold & melt-full-period

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 22 / 87

Introduction

Terminology

plugin: only melt.so as plugin to gcc-4.5 built from
gcc/melt-runtime.[ch] and loaded when -fplugin=melt.so

MELT runtime: the functions from gcc/melt-runtime.[ch]22

MELT language: our lispy domain specific language23

MELT file: a φ.melt file in our lispy MELT language
source file: the *.c *.cc *.f90 . . . files compiled by GCC

MELT generated file: the φ.c file generated from φ.melt by the MELT translator

MELT module: the φ.so shared object, dynamically loaded from the MELT
runtime (calling conventions specific to MELT and unrelated to GCC plugins)

MELT mode: usually, a word or identifier ω passed with gcc-4.5

-fplugin=melt.so -fplugin-arg-melt-mode=ω or gcc-melt
-fmelt-mode=ω. No extra processing happens without a mode.

GCC stuff: any internal (often GTY-ed) data inside gcc-4.5 (or trunk), e.g.
long or gimple or edge . . .

22Runtime provided by the melt.so plugin for gcc-4.5, or included in gcc-melt
23A future infix form would be called *.milt

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 23 / 87

Basic MELT usage and features

Table of Contents

1 Introduction

2 Basic MELT usage and features
running MELT
MELT language syntax
MELT data (things = values + stuff)
connecting GCC to MELT

3 Pattern matching

4 Coding passes in MELT

5 Conclusion and future work

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 24 / 87

Basic MELT usage and features running MELT

Running MELT

Without any mode, [nothing more happens, so] running gcc-melt -O -c foo.c
is the same as gcc-trunk -O -c foo.c
or gcc-4.5 -fplugin=melt.so -O -c foo.c

The gcc compiler driver requires some source file. In some modes, it is useful to
compile an empty.c file (simply to get cc1 started):

translate your foo.melt to module foo.so:
gcc-melt -fmelt-mode=translatetomodule \

-fmelt-arg=foo.melt -c empty.c

translate your foo.melt and run it immediately when compiling bar.c:

gcc-melt -fmelt-mode=runfile -fmelt-arg=foo.melt \
-O -c bar.c

Notice that in both cases, the cc1 started by gcc-melt is itself generating a
C file and fork-ing its compilation24 into a MELT module.

24Actually cc1 is pex_execute-ing a make command using melt-module.mk!

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 25 / 87

Basic MELT usage and features running MELT

Running MELT as plugin

With melt.so as plugin to GCC 4.5, the commands are:
translate your foo.melt to module foo.so:

gcc-4.5 -fplugin=melt.so \
-fplugin-arg-melt-mode=translatetomodule \
-fplugin-arg-melt-arg=foo.melt -c empty.c

translate your foo.melt and run it immediately when compiling bar.c:

gcc-4.5 -fplugin=melt.so \
-fplugin-arg-melt-mode=runfile \
-fplugin-arg-melt-arg=foo.melt -O -c bar.c

In general, ∀α
-fplugin-arg-melt-α for gcc-4.5 -fplugin=melt.so

≡ -fmelt-α for gcc-melt

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 26 / 87

Basic MELT usage and features running MELT

Existing MELT modes
they don’t fit all on the screen!

shell run

gcc-melt -fmelt-mode=help -c empty.c

⇒

* help : MELT help about available modes.

* justscan : install a pass scanning all the code

* makedoc : generate .texi documentation from .melt source files;

ARGLIST= input file, ...; OUTPUT= generated file

* makegreen : enable a pass finding fprintf to stdout...

* nop : a mode doing nothing.

* rundebug : translate and run a .melt file for debug;

ARGUMENT= input file; [OUTPUT=generated C]

* runfile : translate and run a .melt file.

ARGUMENT= input file; [OUTPUT=generated C].

* smallana : install a small analysis pass

* translatedebug : translate a .melt file to .so module for debug;

ARGUMENT= input file; OUTPUT= generated module *.so;

generates also *.c and no MELT line number;

Useful for running gdb on the module.

* translatefile : translate a .melt file to .c;

ARGUMENT= input file; OUTPUT= generated C file

* translateinit : translate the very first *.melt file;

useful only at MELT installation! ARGUMENT= input file; OUTPUT= generated file.

* translatetomodule : translate a .melt file to .so module;

ARGUMENT= input file; OUTPUT= generated module *.so

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 27 / 87

Basic MELT usage and features running MELT

MELT files, directories, paths

MELT builtin source directory 25for “MELT system” files
warmelt-*.melt (the MELT infrastructure and translator) and
xtramelt-*.melt (extra MELT passes and functions). Also contains the
corresponding translation warmelt-*.c.
MELT builtin module directory 26 for the “MELT system”, contains the
executable modules warmelt-*.so and xtramelt-*.so and their
default list melt-default-modules.modlis
colon separated MELT source path of directories, used to find MELT
source files *.melt & *.c, from program argument
-fmelt-source-path or environment variable GCCMELT_SOURCE_PATH.
MELT module path of directories, used to find MELT module files *.so (or
their *.modlis list), from -fmelt-module-path or GCCMELT_MODULE_PATH
MELT colon separated initial module list -fmelt-init is a list of
modules or @ module lists. Defaults to @@ for @melt-default-modules

25e.g. /usr/local/libexec/gcc/gcc-melt/x86_64-unknown-linux-gnu/4.6.0/melt-source which is
always seeked

26e.g. /usr/local/libexec/gcc/gcc-melt/x86_64-unknown-linux-gnu/4.6.0/melt-module
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 28 / 87

Basic MELT usage and features running MELT

other significant MELT program options

a single argument -fmelt-arg=α (e.g. a MELT input file to translate);
a secondary argument -fmelt-secondarg=α;
an output argument -fmelt-output=ω (e.g. a MELT generated C file);
an option argument -fmelt-option=α;
a temporary directory -fmelt-tempdir=δ;
a comma separated argument list -fmelt-arglist=α1,α2;
the makefile to build MELT modules from MELT generated C files
-fmelt-module-makefile27

the make command to built them -fmelt-module-make-command

27the builtin default is
/usr/local/libexec/gcc-melt/gcc/x86_64-unknown-linux-gnu/4.6.0/melt-module.mk

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 29 / 87

Basic MELT usage and features running MELT

MELT lispy dialect

Why a Lispy syntax? Because I am lazy28, and because of Emacs-Lisp and Guile!

As usual:
Lisp ≡ Lots of Insipid Stupid Parenthesis
Parenthesis are very important: φ 6= (φ) and always matched
MELT syntactic constructs are always prefix29like (Ω α1 ... αn)
where Ω is the operator and the αi are the n ≥ 0 operands or arguments.

28no time to create a sexy syntax and an Emacs mode for it
29Except syntactic sugar like ’ or ? etc.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 30 / 87

Basic MELT usage and features running MELT

MELT vs other lisps

MELT is lexically scoped (à la Scheme) with a single namespace.
MELT can handle non-value data called stuff
nil, noted (), is the only false value30

several major syntactic constructs are noted nearly like in other Lisps: let
if lambda cond defun definstance setq . . .

symbols (e.g if or foo) are objects of class_symbol
keywords (e.g :else or :gimple) are objects of class_keyword
source s-expressions are parsed as instances of class_sexpr and
know their location
lists are not just simply linked pairs
no familiar operations : there is no car 31, cons, or +32 in MELT

’2 6= 2, because ’2 is a [boxed long] value but 2 is some :long stuff

30Every non-nil value is true. But the stuff 0 is false!
31The first element of a list is gotten with list_first_element
32The +i primitive binary operation handles unboxed long stuff, not values!

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 31 / 87

Basic MELT usage and features running MELT

main MELT lexical conventions

identifiers or symbols are case insensitive, so let is the same as LeT
symbols may contain a few special characters, e.g. <i or +i
“keywords” start with a colon like :long or :else33

comments start with a semi-colon ; up to end of line
strings are nearly like in C (so "a\nb" has three characters...).
macro-strings (for C code chunks with MELT “hole” variables) with #{ ... }# so

#{/*$P*/printf("a=%ld\n", $A);}#

≡
("/*" p "*/printf(\"a=%ld\\n\", " a ");")

’ε is syntactic sugar for (quote ε), e.g. ’"ab" ≡ (quote "ab") and
’if ≡ (quote if)

?ε is syntactic sugar for (question ε), so ?x ≡ (question if)

33“keyword” is lisp parlance, not as syntactically important as in C or Ada.
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 32 / 87

Basic MELT usage and features running MELT

Hello world in MELT

1 ;;;;;;; file hello.melt -*- lisp -*-
2 ;;; a comment for the generated C code
3 (comment "hello world is public domain")
4 ;;; a code chunk containing C
5 (code_chunk say-hello-chunk
6 #{printf("hello from MELT %s:%d\n",
7 __FILE__, __LINE__);}#)
8 ;;;;;;; eof hello.melt

the comment is translated into a C comment. The code_chunk adds some C code
chunk in the generated C file. MELT source line numbers are preserved in the
generated C file thru #line directives.

shell run 4

gcc-melt -fmelt-mode=runfile -fmelt-arg=hello.melt -c empty.c

⇒

hello from MELT hello.melt:8

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 33 / 87

Basic MELT usage and features running MELT

building the hello module and running it

shell run 5

gcc-melt -fmelt-mode=translatetomodule -fmelt-arg=hello.melt -c empty.c

⇒

shell run 6

ls -lt hello.*

⇒

-rw-r--r-- 1 meltuser meltuser 10992 Oct 26 03:09 hello.c
-rwxr-xr-x 1 meltuser meltuser 135408 Oct 26 03:09 hello.so
-rw-r--r-- 1 meltuser meltuser 10989 Oct 26 03:09 hello.c%
-rw-r--r-- 1 meltuser meltuser 286 Oct 22 16:31 hello.melt

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 34 / 87

Basic MELT usage and features running MELT

shell run 7

gcc-melt -fmelt-init=@@:hello -c empty.c

⇒

Nothing happenned, since there is no mode.

shell run 8

gcc-melt -fmelt-module-path=. -fmelt-init=@@:hello -fmelt-mode=nop -c empty.c

⇒

hello from MELT hello.melt:8

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 35 / 87

Basic MELT usage and features running MELT

MELT files and modules

Very Scheme inspired:
a MELT source file φ.melt contains a sequence of expressions 34 and
is compiled into a melt module φ.so (with a big initialization function for
the evaluation of each expression).
the melt runtime dlopen-s the φ.so module
modules are loaded in sequence, and the MELT system has an initial
sequence35 (containing the translator and initial environments). User modules are
loaded after these.
a module consumes an environment and produces a new one, as a
translated side effect of evaluating the expessions in φ.melt. Only
exported bindings are visible outside of the module.

In practical terms, a MELT source file contains defining and/or side-effecting
expressions. It can install new modes and new GCC passes etc. Translating
φ.melt to φ.c is much faster than compiling the generated φ.c to φ.so.

34It is also possible to compile a sequence of expressions from the MELT heap into a module!
35the modules warmelt-*.so and xtramelt-*.so listed in melt-default-modules

abreviated by @@
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 36 / 87

Basic MELT usage and features MELT language syntax

main MELT syntactic constructs

expressions where n ≥ 0 and p ≥ 0
application (φ α1 ... αn) apply function (or primitive) φ to argu-

ments αi
assignment (setq ν ε) set local variable ν to ε
message send (σ ρ α1 ... αn) send selector σ to reciever ρ with argu-

ments αi
let expression (let (β1...βn) ε1...εp ε′) with local sequential36 bindings βi

evaluate side-effecting sub-expressions
εj and give result of ε′

sequence (progn ε1...εn ε′) evaluate εi (for their side effects) and at
last ε′, giving its result (like operator , in
C)

abstraction37 (lambda φ ε1...εn ε′) anonymous function with formals φ and
side-effecting expressions εi , return re-
sult of ε′

pattern matching (match ε χ1 ... χn) match result of ε against match clauses
χi , giving result of last expression of
matched clause.

36So the let of MELT is like the let* of Scheme!
37abstractions are constructive expressions and may appear in letrec bindings

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 37 / 87

Basic MELT usage and features MELT language syntax

A cleared thing38 (represented by all zero bits) is nil, or the long 0 stuff, or the
null gimple or tree . . . stuff. It is false.

conditional expressions where n ≥ 0 and p ≥ 0
test (if τ θ ε) if τ then θ else ε (like ?: in C)
conditional (cond κ1 ... κn) evaluate conditions κi until one is satisfied
conjonction (and κ1 ... κn κ′) if κ1 and then κ2 . . . and then κn is “true” (non

nil or non zero) then κ′ else the cleared thing of
same type

disjunction (or δ1 ... δn) the first of the δi which is “true” (non nil, or zero,
...)

In a cond conditional expression, every condition κi -except perhaps the last- is like (γi εi,1 ...
εi,pi ε′) with pi ≥ 0. The first such condition for which γi is “true” gets its sub-expressions εi,j
evaluated sequentially for their side-effects and gives its ε′. The last condition can be (:else ε1
... εn ε′), is triggered if all previous conditions failed, and (with the sub-expressions εi
evaluated sequentially for their side-effects) gives its ε′

38Every local thing (value, stuff . . .) is cleared at start of its containing MELT function.
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 38 / 87

Basic MELT usage and features MELT language syntax

more expressions
loop (forever λ α1 ... αn) loop indefinitely on the αi which

may exit
exit (exit λ ε1 ... εn ε′) exit enclosing loop λ after side-

effects of εi and result of ε′

return (return ε ε1 ... εn) return ε as the main result, and the
εi as secondary results

multiple call (multicall φ κ ε1...εn ε′) locally bind formals φ to main and
secondary result[s] of application or
send κ and evaluate the εi for side-
effects and ε′ for result

recursive let (letrec (β1...βn) ε1...εp) with co-recursive constructive bind-
ings βi evaluate sub-expressions εj

field access (get_field :Φ ε) if ε gives an appropriate object39 re-
trieves its field Φ, otherwise nil

unsafe field access (unsafe_get_field :Φ ε) unsafe40 access without check like
above

object update (put_fields ε :Φ1 ε1 ...
:Φn εn)

safely update 41 (if appropriate) in
object given by ε each field Φi by
value of εi

39i.e. if the value ω of ε is an object which is a direct or indirect instance of the class defining
field Φ.

40Only for MELT gurus, since it may crash!
41i.e. update object ω only if the value ω of ε is an object which is a direct or indirect instance of

the class defining each field Φi
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 39 / 87

Basic MELT usage and features MELT language syntax

constructive expressions
list (list α1 ... αn) make a list of n values αi

tuple (tuple α1 ... αn) make a tuple of n values αi

instance (instance κ :Φ1 ε1 ... :Φn εn) make an instance of class κ
and n fields Φi set to value εi

Abstractions (lambda expressions) are also constructive.

Constructive expressions may be recursively bound in letrec:

1 (letrec (
2 (a (list b c))
3 (b (tuple a b))
4 (c (lambda (x y) (if (== x a) b y)))
5 (d (instance class_container :container_value a))
6)
7 (c d bar))

Note: contrarily to Scheme, MELT has no tail recursive calls.
Every [recursive] MELT call grows the stack (because it is translated to a C call).

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 40 / 87

Basic MELT usage and features MELT language syntax

expressions about names
expressions defining names

for functions (defun ν φ ε1 ... εn ε′) define function ν with formal arguments φ and
body ε1 ... εn ε

′

for primitives (defprimitive ν φ :θ η) define primitive ν with formal arguments phi ,
result c-type θ by macro-string expansion η

for c-iterators (defciterator ν Φ σ Ψ η
η′)

define c-iterator ν with input formals Φ, state
symbol σ, local formals Ψ, start expansion η,
end expansion η′

for c-matchers (defcmatcher ν Φ Ψ σ η

η′)
define c-matcher ν with input formals Φ [the
matched thing, then other inputs], output formals
Ψ, state symbol σ, test expansion η, fill expan-
sion η′

for fun-matchers (defunmatcher ν Φ Ψ ε) define funmatcher ν with input formals Φ, out-
put formals Ψ, with function ε

expressions exporting names
of values (export_value ν1 ...) export the names νi as bindings of value

(e.g. of functions, objects, matcher)
of macros (export_macro ν ε) export name ν as a binding of a macro (ex-

panded by the ε function)
of classes (export_class ν1 ...) export every class name ν and all their

fields (as value bindings)
as synonym (export_synonym ν ν′) export the new name ν as a synonym of

the existing name ν′

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 41 / 87

Basic MELT usage and features MELT language syntax

miscellanous expressions

For all:
expressions for debugging

debug message (debug_msg ε µ) debug printing message µ & value ε
assert check (assert_msg µ τ) nice “halt” showing message µ when as-

serted test τ is false
warning (compile_warning µ ε) like #warning in GCC C: emit warning µ

at MELT translation time and gives ε
meta-conditionals

Cpp test (cppif σ ε ε′) conditional on a preprocessor symbol:
emitted C code is #if σ code for ε #else

code for ε′ #endif

Version test (gccif β ε1 ...) the εi are translated only if the GCC trans-
lating them has version prefix string β

For gurus:
introspective expressions

Parent environment (parent_module_environment) gives the previous
module environment

Current environment (current_module_environment_container) gives the container of
the current module’s
environment

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 42 / 87

Basic MELT usage and features MELT data (things = values + stuff)

MELT values [and stuff] from inside

An example: boxed gimple (values containing a raw gimple pointer) from
melt-runtime.h

1 struct GTY (()) meltgimple_st {
2 meltobject_ptr_t discr;
3 gimple val;
4 };

Every MELT value has a discriminant. Such a discriminant is a non-null MELT
object (not all values are objects).
MELT values are first-class. Non-value stuff (e.g. raw gimple or long) is
second-class.

Things = Values ∪ Stuff
any data relevant to
MELT

first class, with dis-
criminant

second class, like
gimple or long

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 43 / 87

Basic MELT usage and features MELT data (things = values + stuff)

stuff handled by MELT

Potentially, any data inside GCC. In practice
long raw integers
cstring, i.e. constant array of chars like "mutable" - the const
char [] data! These are not heap-allocated!
Major GCC data types like gimple, gimple_seq, tree, basic_block,
edge, loop, rtx, rtvec & bitmap

PPL data like ppl_coefficient etc.
void (like in C, for absence of result)
MELT value-s are not really stuff...

Any GTY-ed type could be handled as some stuff.42

Stuff are second-class43 in MELT. Handling first-class values is simpler.

42Adding extra GTY-ed data types requires additional code in the MELT runtime.
43They can only be secondary arguments or results.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 44 / 87

Basic MELT usage and features MELT data (things = values + stuff)

MELT simple values

Most stuff can be boxed as a simple value, .e.g
boxed gimple

boxed tree

boxed long

etc.
the nil value

Strings are immutable (heap-allocated) MELT values. Several discriminants44

are possible e.g. discr_verbatim_string and discr_string.
String buffers contain a growable sequence of characters.

44One could also have several kinds or colors of boxed gimple by making several
discriminants for them.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 45 / 87

Basic MELT usage and features MELT data (things = values + stuff)

MELT aggregate values

1 tuples, i.e. fixed sequence of values
2 pairs (head is any value, tail is a pair or nil)
3 lists (it knows its first and last pair)45

4 MELT objects (described below)
5 closures (a MELT function with values)
6 associative hash-maps associating keys46 to non-nil values:

string maps (= dictionnary); keys are string values.
object maps; keys are MELT objects
gimple, tree, edge ... maps; key are non nil stuff (all of the same C type).

Hash-maps are quite important, it is the only way to associate MELT values
to major GCC data types like gimple or basic_block

45So MELT lists are not like in Scheme or Lisp!
46But we don’t have maps associating non-object values -like closures, boxed edge-s, or

tuples- to other values.
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 46 / 87

Basic MELT usage and features MELT data (things = values + stuff)

aggregate values (figure)

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 47 / 87

Basic MELT usage and features MELT data (things = values + stuff)

MELT objects representation

1 typedef struct meltobject_st* meltobject_ptr_t;
2 struct GTY ((variable_size)) meltobject_st {
3 /* for objects, the discriminant is their class */
4 meltobject_ptr_t obj_class;
5 unsigned obj_hash; /* hash code of the object */
6 unsigned short obj_num;
7 /* discriminate the melt_un containing it as discr */
8 #define object_magic obj_num
9 unsigned short obj_len;

10 melt_ptr_t GTY ((length ("%h.obj_len")))
11 obj_vartab[FLEXIBLE_DIM];
12 };

The obj_num (≡ object_magic) field is set at most once to a non-zero
short.

The object_magic field of discriminants (starting every MELT value) is
describing in the union melt_un the GTY-ed field.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 48 / 87

Basic MELT usage and features MELT data (things = values + stuff)

The MELT values in melt-runtime.h

1 typedef union melt_un* melt_ptr_t;
2 union GTY ((desc ("%0.u_discr->object_magic"))) melt_un {
3 meltobject_ptr_t GTY ((skip)) u_discr;
4 struct meltmultiple_st
5 GTY ((tag ("MELTOBMAG_MULTIPLE"))) u_multiple;
6 struct meltobject_st
7 GTY ((tag ("MELTOBMAG_OBJECT"))) u_object;
8 struct meltlist_st
9 GTY ((tag ("MELTOBMAG_LIST"))) u_list;

10 struct meltclosure_st
11 GTY ((tag ("MELTOBMAG_CLOSURE"))) u_closure;
12 struct meltgimple_st
13 GTY ((tag ("MELTOBMAG_GIMPLE"))) u_gimple;
14 struct meltmapobjects_st
15 GTY ((tag ("MELTOBMAG_MAPOBJECTS"))) u_mapobjects;
16 struct meltmapgimples_st
17 GTY ((tag ("MELTOBMAG_MAPGIMPLES"))) u_mapgimples;
18 // etc . . .
19 };

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 49 / 87

Basic MELT usage and features MELT data (things = values + stuff)

MELT classes and object creation
e.g. MELT mode for GCC pass

Dynamic object creation with instance (from gcc/melt/xtramelt-ana-simple.melt)

1 (defun makegreen_docmd (cmd moduldata) ;; unused formals
2 (let ((greenpass
3 (instance class_gcc_gimple_pass
4 :named_name ’"melt_greenpass"
5 :gccpass_gate makegreenpass_gate
6 :gccpass_exec makegreenpass_exec
7 :gccpass_data
8 (make_maptree discr_map_trees 100)
9 :gccpass_properties_required ()

10)
11))
12 ;;; register our pass after the "phiopt" pass
13 (install_melt_gcc_pass greenpass "after" "phiopt" 0)
14 ;; return non-nil, e.g. our greenpass, to accept the mode
15 greenpass)))

In the above makegreen_docmd function -called from the makegreen MELT mode-, an
instance of class_gcc_gimple_pass is created and registered as a GCC pass

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 50 / 87

Basic MELT usage and features MELT data (things = values + stuff)

static creation with definstance which defines a MELT variable statically
bound to an instance:
definition and installation of a MELT mode

1 (definstance makegreen_mode
2 class_melt_mode
3 :named_name ’"makegreen"
4 :meltmode_help
5 ’"enable a pass finding fprintf to stdout..."
6 :meltmode_fun makegreen_docmd
7)
8 (install_melt_mode makegreen_mode)

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 51 / 87

Basic MELT usage and features MELT data (things = values + stuff)

defining a MELT class

MELT classes are defined with defclass, by giving the super-class and the
sequence of fields (instance variables).

1 ;; class describing MELT options
2 (defclass class_option_descriptor
3 :doc #{A class describing MELT options for -fmelt-option=}#
4 :super class_root
5 :fields (optdesc_name
6 optdesc_fun
7 optdesc_help)
8)

There is a tree of classes. The topmost class (without any proper fields) is
class_root. Conventionally, the class name starts with class_. Often, the
field names share a common prefix.

Discriminants, classes and fields are reified : they are objects (of class
class_discriminant, class_class, class_field respectively).

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 52 / 87

Basic MELT usage and features MELT data (things = values + stuff)

globally unique field names

The field names should be globally unique. This enables the safe get_field
contruct, which tests that the accessed value is an object of the right class:

(get_field :container_value cont)

≡

1 (if (is_a cont class_container)
2 (unsafe_get_field :container_value cont)
3 ())

The is_a primitive tests that cont is an object, and is an instance of
class_container or a sub-class. The discriminant of a value (e.g. the class
of an instance) can be accessed with the discrim primitive. The discriminant
of nil is conventionally discr_null_reciever. The subclassing relation is
tested with subclass_of or subclass_or_eq primitives.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 53 / 87

Basic MELT usage and features MELT data (things = values + stuff)

selector, methods and message sending

Selectors are “method names”. They are defined with defselector, similar to
definstance.

1 ;; selector for debugging output
2 (defselector dbg_output class_selector
3 :formals (recv dbginfo :long depth)
4)

Once a selector is defined, every use of it as operator is a message send.
The optional :formals given in a selector enable checking the signature of
message sends.
Almost always, the class of a selector is class_selector47.

Selectors exist independently of the discriminants (or classes) understanding
them. Sending a message with a selector σ to a recieving value v whose
discriminant δ don’t know about σ is a no-op and gives nil.

47But it could be a sub-class of class_selector.
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 54 / 87

Basic MELT usage and features MELT data (things = values + stuff)

message sending and method installation
The sending of a message is (σ ρ α1 ... αn) syntactically like an
application48, it has a selector σ, a recieving value ρ and secondary
arguments αi :
(dbg_output curval dbgi (+i depth 1))
Sending a message in MELT is more similar to Smalltalk sends than to methods calls in C++ or
Java.

A method is just a function installed49 with install_method. There is no
special name (unlike this in C++) for the formal reciever.

1 ;; null debug output
2 (defun dbgout_null_method (self dbgi :long depth)
3 (let ((out (unsafe_get_field :dbgi_out dbgi)))
4 (add2out_strconst out "()")))
5 (install_method discr_null_receiver dbg_output
6 dbgout_null_method)

48However, the selector in a message send is always a constant selector name. In contrast, in
function applications, the applied function can be computed with a complex expression.

49Methods can be installed and removed dynamically at any time, independently of their
discriminants and selectors.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 55 / 87

Basic MELT usage and features MELT data (things = values + stuff)

message sending machinery

Every discriminant (i.e. class) has a method dictionnary, and a
super-discriminant (i.e. the super-class of a class). To send a message with
selector σ to reciever50 ρ and extra arguments αi of discriminant δ

1 look in the method dictionnary51 of δ for a closure associated to σ
2 if a closure κ is found, use it as the method function and apply it (i.e. κ) to
ρ and the αi ...

3 otherwise, look in the super-discriminant δ′ (e.g. super-class) of δ, and
repeat by replacing δ with δ′.

The topmost discriminant is discr_any_reciever. It is the ultimate
super-discriminant of every other discriminant or class.
Message sending is a bit slower than function application.

50Messages can be sent to any MELT value, even nil, closures, boxed gimples, maps...
51The field :disc_methodict in discriminants is a object hash map whose keys are selectors,

associated to method closures.
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 56 / 87

Basic MELT usage and features MELT data (things = values + stuff)

MELT ctype - annotations for types of stuff

In formal argument lists, keywords like :long indicate the ctype of next
formals, so the formal argument list (x y :long n p :value z) means :
formals x y are values, n p are long stuff, then z is value.
Likewise, let binds sequentially52 local variables

1 (let ((:long n 0)
2 (:gimple g (gimple_content gb))
3)
4 (f a n g))

Each stuff type has its ctype keyword, like :gimple :gimple_seq
:basic_block :long :cstring etc.

52So MELT’s let is like let* in Scheme!
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 57 / 87

Basic MELT usage and features MELT data (things = values + stuff)

MELT closures = functional values

A MELT function can take both values and stuff as arguments. First argument
(if any) should be a value53. A function application54 returns a value55.
Only values can be closed.
Closures can be passed as arguments. Named functions are defined with
defun (as in Emacs Lisp)

1 ;; apply f to each boxed gimple in a gimple seq gseq
2 (defun do_each_gimpleseq (f :gimple_seq gseq)
3 (each_in_gimpleseq
4 (gseq) (:gimple g)
5 (let ((gplval (make_gimple discr_gimple g)))
6 (f gplval)))
7)

53It is the reciever in methods
54And hence message sendings
55Secondary results can be stuff.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 58 / 87

Basic MELT usage and features MELT data (things = values + stuff)

application mechanism

preferably, formals arguments and actual parameters should be similar (in
number, in ctype). First formal and primary parameter should be a :value.
no variable arity MELT functions exist.
(in C code) secondary arguments (and secondary results if any) are
passed thru arrays of union meltparam_un described by a constant
string (produced by the MELT translator).
if a formal argument mismatch its actual parameter, it is cleared with the
rest of the formals
primary result is a :value

secondary actual results are handled similarily.

⇒ mismatched arguments or results are cleared.

Applying a non-closure value gives nil.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 59 / 87

Basic MELT usage and features connecting GCC to MELT

connecting the GCC API to MELT

Several linguistic devices exist:

code_chunk to add C code inside MELT code (like asm adds assembly
code inside C code).
defprimitive to define primitive operations (by a translation “template”
to C).
defciterator to define iterative constructs
defcmatcher to define pattern-matching constructs

Each take advantage of macro-strings (mixing strings for C code fragments
with MELT symbols for “holes”).

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 60 / 87

Basic MELT usage and features connecting GCC to MELT

C code in MELT with code_chunk-s

Useful to include unique C code. For example (with modnamestr bound to a string value)

(code_chunk
checkerrorsaftercompilation
#{ /*$checkerrorsaftercompilation*/
if (melt_error_counter>0)
melt_fatal_error ("MELT translation of %s halted: got %ld MELT errors",

melt_string_str($modnamstr),
melt_error_counter);

}#)

Becomes translated to
/*CHECKERRORSAFTERCOMPILATION__1*/
if (melt_error_counter>0)

melt_fatal_error ("MELT translation of %s halted: got %ld MELT errors",
melt_string_str(/*_.MODNAMSTR__V3*/ meltfptr[2]),

melt_error_counter);

Notice the substitution of $-names: the state symbol
checkerrorsaftercompilation with the unique CHECKERRORSAFTERCOMPILATION__1

and modnamstr with /*_.MODNAMSTR__V3*/ meltfptr[2]

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 61 / 87

Basic MELT usage and features connecting GCC to MELT

primitives with their C “template”

(defprimitive basicblock_nb_succ (:basic_block bb)
:long
#{(($BB)?EDGE_COUNT($BB->succs):0)}#)

The ctype of primitive application actual parameters is checked56.

A primitive is translated into a C block or instruction if its resulting ctype is
:void.

Otherwise, it is translated into a C expression.

When defining your primitives, make them safer by checking for null pointers!

56MELT gives an error at translation time if basicblock_nb_succ is given a thing which is not
a :basic_block, (like a value or a long stuff).

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 62 / 87

Basic MELT usage and features connecting GCC to MELT

defining iterative constructs with defciterator

The each_in_gimpleseq iterates for every gimple g inside a gimple_seq
gseq:

;;;; iterate on a gimpleseq
(defciterator each_in_gimpleseq
(:gimple_seq gseq) ;start formals
eachgimplseq ;state symbol
(:gimple g) ;local formals
;;; before expansion
#{
gimple_stmt_iterator gsi_$eachgimplseq;
if ($gseq)
for (gsi_$eachgimplseq = gsi_start ($gseq);

!gsi_end_p (gsi_$eachgimplseq);
gsi_next (&gsi_$eachgimplseq)) {

$g = gsi_stmt (gsi_$eachgimplseq);
}#
;;; after expansion
#{ /*end $eachgimplseq*/ } }#)

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 63 / 87

Basic MELT usage and features connecting GCC to MELT

Translation (partly) in C
/*citerblock EACH_IN_GIMPLESEQ*/ {
gimple_stmt_iterator gsi_cit1__EACHGIMPLSEQ;
if (/*_?*/ meltfram__.loc_GIMPLE_SEQ__o0)

for (gsi_cit1__EACHGIMPLSEQ = gsi_start (/*_?*/ meltfram__.loc_GIMPLE_SEQ__o0);
!gsi_end_p (gsi_cit1__EACHGIMPLSEQ);
gsi_next (&gsi_cit1__EACHGIMPLSEQ)) {
/*_?*/ meltfram__.loc_GIMPLE__o1 = gsi_stmt (gsi_cit1__EACHGIMPLSEQ);

MELT_LOCATION("xtramelt-ana-base.melt:2502:/ quasiblock");
#ifndef MELTGCC_NOLINENUMBERING
#line 2502 ".../xtramelt-ana-base.melt"
#endif /*MELTGCC_NOLINENUMBERING*/
/*_.GPLVAL__V4*/ meltfptr[3] =
(meltgc_new_gimple((meltobject_ptr_t)((/*!DISCR_GIMPLE*/ meltfrout->tabval[0])),(/*_?*/ meltfram__.loc_GIMPLE__o1)));;
MELT_LOCATION("xtramelt-ana-base.melt:2503:/ apply");
/*apply*/{
/*_.F__V5*/ meltfptr[4] = melt_apply ((meltclosure_ptr_t)(/*_.F__V2*/ meltfptr[1]), (melt_ptr_t)(/*_.GPLVAL__V4*/ meltfptr[3]), (""), (union meltparam_un*)0, "", (union meltparam_un*)0);
};

/*_.LET___V3*/ meltfptr[2] = /*_.F__V5*/ meltfptr[4];;
MELT_LOCATION("xtramelt-ana-base.melt:2502:/ clear");
/*clear*/ /*_.GPLVAL__V4*/ meltfptr[3] = 0 ;
/*clear*/ /*_.F__V5*/ meltfptr[4] = 0 ;
}
MELT_LOCATION("xtramelt-ana-base.melt:2500:/ clear");
/*clear*/ /*_?*/ meltfram__.loc_GIMPLE__o1 = 0 ;
/*clear*/ /*_.LET___V3*/ meltfptr[2] = 0 ;}

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 64 / 87

Pattern matching

Table of Contents

1 Introduction

2 Basic MELT usage and features
running MELT
MELT language syntax
MELT data (things = values + stuff)
connecting GCC to MELT

3 Pattern matching

4 Coding passes in MELT

5 Conclusion and future work

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 65 / 87

Pattern matching

Patterns in MELT

patterns are major nested syntactic constructs (like expressions are) in
MELT.
patterns appear in the match expression, with the ? notation.
patterns are a destructuring mechanism. They consume some thing
(the matched data) µ, and extract several data-s from it (transmitted to
sub-patterns).
a pattern may match or fail.
pattern variables are instanciated by the matching.
a pattern matching involves a test (of the matched data, does it match?)
and then a fill (of the transmitted data to sub-patterns)
MELT patterns can be non-linear: the same pattern variable can appear
more than once.

Similarity of patterns in the unix world: sed regexpr-s (or in Posix regular expressions
in the regexec function): Regexpr-s consume strings, and extra matched substrings
(thru regmatch_t in Posix regexec).
MELT patterns inspired by Ocaml’s patterns mostly (and also Wadler’s views, bananas,
etc.).

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 66 / 87

Pattern matching

an example of pattern use

1 (defun makegreen_transform (grdata :tree decl :basic_block bb)
2 (debug_msg grdata "makegreen_transform start grdata")
3 (debugbasicblock "makegreen_transform bb" bb)
4 (eachgimple_in_basicblock
5 (bb) (:gimple g)
6 (match g
7 (?(gimple_assign_cast ?lhs ?rhs)
8 (debugtree "makegreen_transform assign cast lhs" lhs)
9 ;; etc

10)
11 (?(gimple_assign_single
12 ?lhs ?(and ?rhs
13 ?(tree_var_decl
14 ?_ ?(cstring_same "stdout") ?_)))
15 (debugtree "makegreen_transform assign stdout lhs" lhs)
16 ;; etc
17)
18 (?_
19 (debuggimple "makegreen_transform unmatched g" g)
20))))

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 67 / 87

Pattern matching

match expressions
syntax

Syntax: (match ε χ1 ... χn) where ε is the matched sub-expression and
the χi are match clauses

Each match clause χi starts with a pattern πi followed by one or more
sub-expressions: χi ≡ (πi εi,1 ... εi,ni ε′i)

Patterns (usually starting with ? - a question mark) may in particular be
constants,
pattern variables like ?x or jokers like ?_

composite patterns with matchers, e.g. ?(gimple_assign_cast ?lhs ?rhs)

patterns made with “patmacros” like
?(and ?(gimple_cond_less ?lhs ?rhs)

?(gimple_cond_with_edges ?iftrue ?iffalse))

etc . . .

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 68 / 87

Pattern matching

match expressions
informal semantics

First, the matched ε is evaluated to some matched thing µ (a value or a stuff).

The matched thing µ is matched with each pattern π1 ... πn in turn. When a
matching pattern πi is found, its pattern variables bound by the match are
visible in the clause57, and the sub-expressions εi,1 ... εi,ni are evaluated for
their side effects and the last sub-expression ε′i ’ gives the result of the entire
match.

Usually the sub-expressions in a match clause contains the pattern variables.

If no clause matches, the entire match expression gives a cleared result (nil
value, 0 long stuff, (gimple)0 stuff, ...).
The resulting ctype of the match expression is the common ctype of the ε′i (or
else :void)

57E.g. if ?x appears inside π2 and ε′2 ≡ x, the result of the entire match expression is the thing
matching ?x when µ matches π2

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 69 / 87

Pattern matching

Pattern syntax

expressions ε (e.g. constant literals) are (degenerated) patterns. They match
the matched data µ iff ε == µ (for the C sense of ==).
The joker noted ?_ matches every thing and never fails.
a pattern variable ?ν matches µ if it was unset (by a previous [sub-]matching
of the same ?ν). In addition, it is then set to µ. If the pattern variable was
previously set, it is tested for identity with == in the C sense.
most patterns are matcher patterns ?(m ε1 ... εn π1 ... πp)
where the n ≥ 0 expressions εi are input parameters to the matcher m
and the πj sub-patterns are passed extracted data.
instance patterns are ?(instance κ :Φ1 π1 ... :Φn πn); matched µ
is an object of [a sub-] class κ whose field Φi matches sub-pattern πi .
conjunctive patterns are ?(and π1 ... πn) and they match µ iff every
πi in sequence matches µ
disjunctive patterns are ?(or π1 ... πn) and they match µ if one of
the πi matches µ

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 70 / 87

Pattern matching

defining C-matchers with defcmatcher

A c-matcher gives C code template for testing the matched data and for filling
the extracted sub-data.

;; match a gimple cast assign
(defcmatcher gimple_assign_cast

(:gimple ga) ;match
(:tree lhs ;left hand side
:tree rhs ;first right operand
) ;outs
gimpascs
;;test expansion
#{/*$gimpascs test*/($ga && gimple_assign_cast_p ($ga))}#
;;fill expansion
#{/*$gimpascs fill*/
$lhs = gimple_assign_lhs($ga);
$rhs = gimple_assign_rhs1($ga);
}#

)

When defining your c-matcher, be cautious: the matched data µ can be cleared!

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 71 / 87

Pattern matching

Defining your matcher with a MELT function

You can define your fun-matcher with a MELT function, which returns primarily
nil on failure and a non-nil value58 on success.
When the match succeeds, the filled data is given thru secondary results.

1 (defun matchbiggereven (fmat :long m :long n)
2 (if (==i (%iraw m 2) 0)
3 (if (>i m n)
4 (let ((:long h (/iraw m 2)))
5 (return fmat h) ;; succeed, gives h
6)))
7 ;; fails
8 (return))
9 (defunmatcher isbiggereven

10 ;; the input formals; first is the matched input...
11 (:long m n)
12 ;; the output formals
13 (:long o)
14 ;; the matching function
15 matchbiggereven)

Then ?(matchbiggereven 5 ?n) would match some long stuff m, if it is even
m = 2n and m > 5 and bind n to n

58E.g. :true or here the matcher fmat
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 72 / 87

Pattern matching

matching translation

A first version of the pattern matching translator is ad-hoc (but try to share
sub-pattern matching).

A second version59 makes a graph of tests

1 (defun testnameofsymbol (symb f g)
2 (match symb
3 (?(instance class_symbol :named_name ?synam)
4 (f synam))
5 (?(instance class_container :container_value ?cval)
6 (g cval))))

gets translated into the following graph

59almost done, very experimental
Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 73 / 87

Pattern matching

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 74 / 87

Coding passes in MELT

Table of Contents

1 Introduction

2 Basic MELT usage and features
running MELT
MELT language syntax
MELT data (things = values + stuff)
connecting GCC to MELT

3 Pattern matching

4 Coding passes in MELT

5 Conclusion and future work

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 75 / 87

Coding passes in MELT

Your passes in MELT

define your own MELT modes (using class_melt_mode and
install_melt_mode).
define and install your GCC passes coded in MELT

if needed, define missing glue (primitives, c-matchers, c-iterators, . . .)
use pattern matching extensively
MELT values can be shared between GCC passes coded in MELT (thru
instances defined by definstance, by closing values, etc.). For instance,
you could have a first pass filling some MELT object with a basic block
hash map assocating MELT closures to basic_block-s, and a later pass
choosing some of the basic block and applying the associated closure.

There are lots of existing MELT names gluing many GCC API names. Look into
documentation or grep the *.melt code.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 76 / 87

Coding passes in MELT

useful MELT features for adding GCC passes

1 (defclass class_gcc_pass
2 :predef CLASS_GCC_PASS
3 :super class_named
4 :fields (gccpass_gate ;closure for gate
5 gccpass_exec ;closure for execution
6 gccpass_data ;extra data
7 gccpass_properties_required
8 gccpass_properties_provided
9 gccpass_properties_destroyed

10 gccpass_todo_flags_start
11 gccpass_todo_flags_finish
12))
13 (defclass class_gcc_gimple_pass
14 :predef CLASS_GCC_GIMPLE_PASS
15 :super class_gcc_pass)
16 (defclass class_gcc_rtl_pass
17 :predef CLASS_GCC_RTL_PASS
18 :super class_gcc_pass)
19 (defclass class_gcc_simple_ipa_pass
20 :predef CLASS_GCC_SIMPLE_IPA_PASS
21 :super class_gcc_pass)

and the install_gcc_pass primitive.

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 77 / 87

Coding passes in MELT

debugging help

You usually don’t want to debug the MELT generated C code under gdb60

The -fmelt-debug program argument to gcc-melt gives lot of (uniquely
numbered) debugging output messages.

The -fmelt-debugskip=1234 program argument skips the first 1234
debugging messages

To get your own debugging messages
Debug display a value with debug_msg:
(debug_msg curval "this is curval")

debug display a stuff, e.g. a raw gimple or tree, with debuggimple,
debugtree primitives61 etc . . .

Such debug messages also show their source location in MELT source file.

60However, your MELT module knows about the MELT source code location because MELT
generates lots of #line directives, which can be disabled

61The debugged stuff is the first argument, the message string the second one!

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 78 / 87

Coding passes in MELT

adding runtime assertions

The assert_msg syntax checks an assertion at runtime:
(assert_msg µ τ)⇒When ENABLE_CHECKING, if the test τ is false,
display the message µ, the MELT call stack, and fatal error.

1 ;; -*- lisp -*- ; public domain file assertex.melt
2 (defun chokeme (x :long t)
3 (debug_msg x "chokeme got x")
4 (assert_msg "choke me got a zero t" t))
5 (defun dobad (x y)
6 (debug_msg y "has x")
7 (if (== x y) (chokeme x 0)))
8 (dobad ’b (multiple_nth (tuple ’a ’b ’c) 1))

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 79 / 87

Coding passes in MELT

debugging aid helps!

shell run 9

gcc-melt -fmelt-mode=runfile -fmelt-arg=assertex.melt -fmelt-debug -c
empty.c

⇒

#4:<RUNFILE_DOCMD @warmelt-outobj.melt:4002> warmelt-outobj.melt:4030:/ clear
#5:_ melt-runtime.c:9546 <do_initial_mode before apply>
#6:_ melt-runtime.c:9760 <load_initial_melt_modules before do_initial_mode> .

@assertex.melt:42: start initialize_module_meltdata_assertex iniframp__=0x7fff03afa120
!!!!****####1743#^6:assertex.melt:6:has x !1: ‘B|CLASS_SYMBOL/bad961
!!!!****####1744#^7:assertex.melt:3:chokeme got x !1: ‘B|CLASS_SYMBOL/bad961
cc1: error: MELT fatal failure from assertex.melt:4 [MELT built Oct 19 2010]

SHORT BACKTRACE[#1744] MELT fatal failure;
#1:<CHOKEME @assertex.melt:2> assertex.melt:4:/ cond.else
#2:<DOBAD @assertex.melt:5> assertex.melt:7:/ cond
#3:_ assertex.melt:8:/ apply
#4:_ melt-runtime.c:7155:meltgc_make_load_melt_module before calling module asserte
#5:<RUNFILE_DOCMD @warmelt-outobj.melt:4002> warmelt-outobj.melt:4030:/ clear
#6:_ melt-runtime.c:9546 <do_initial_mode before apply>
#7:_ melt-runtime.c:9760 <load_initial_melt_modules before do_initial_mode> .

cc1: error: MELT failure with loaded module #1: /usr/local/libexec/gcc-melt/gcc/x86_64-unknown-linux-gnu/4.6.0/melt-module//warmelt-first.so
cc1: error: MELT failure with loaded module #2: /usr/local/libexec/gcc-melt/gcc/x86_64-unknown-linux-gnu/4.6.0/melt-module//warmelt-base.so
cc1: error: MELT failure with loaded module #3: /usr/local/libexec/gcc-melt/gcc/x86_64-unknown-linux-gnu/4.6.0/melt-module//warmelt-debug.so
cc1: error: MELT failure with loaded module #4: /usr/local/libexec/gcc-melt/gcc/x86_64-unknown-linux-gnu/4.6.0/melt-module//warmelt-macro.so

(partial output shown)

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 80 / 87

Conclusion and future work

Table of Contents

1 Introduction

2 Basic MELT usage and features
running MELT
MELT language syntax
MELT data (things = values + stuff)
connecting GCC to MELT

3 Pattern matching

4 Coding passes in MELT

5 Conclusion and future work

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 81 / 87

Conclusion and future work

Try to use MELT by yourself

most of the MELT reference documentation62 is generated63 from MELT
source code (using :doc annotations)
Learn more about MELT by looking into generated documentation... make
pdf in the MELT branch

Generating documentation from code brings “interesting” issues64.
Perhaps MELT reference documentation (mostly generated) will be
GPL-ed?
ask me for help if needed in english on gcc@gcc.gnu.org, in french on
gcc-melt-french@googlegroups.com

patch the MELT branch (e.g. if some primitives are missing)

62Which is very incomplete on october 2010
63In file gcc/meltgendoc.texi in the build tree
64See http://gcc.gnu.org/ml/gcc/2010-10/msg00242.html

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 82 / 87

mailto:gcc@gcc.gnu.org
mailto:gcc-melt-french@googlegroups.com
http://gcc.gnu.org/ml/gcc/2010-10/msg00242.html

Conclusion and future work

Who uses MELT?

(my former intern) Jérémie Salvucci jeremie.salvucci@free.fr:
1 added several needed glues (cmatchers, primitives)
2 coded a translator65 in MELT from Gimple to low-level C for the free Frama-C

http://frama-c.com/ static analyzer66

3 coded (with me) the gengtype patches for plugins67

Marie Krumpe (intern of Emmanuel Chailloux, LIP6 [Paris 6 Univ.])
explored generation of low-level C++ code from Gimple for the Cadna
http://www.lip6.fr/cadna free software library68

Alexandre Pelissy (Mandriva and PhD student at Univ.Tours) - with Pierre
Vittet are starting to use MELT for analysis of the linux kernel code
I am continuing to enhance MELT and will use for generation of OpenCL
code www.opengpu.net69

you are welcome to use it!
65Partially working
66Developed in Ocaml by my CEA collegues and INRIA people; free software LGPL licensed
67Work being submitted to the trunk in october 2010
68estimating accuracy of IEEE 754 floating computations
69Perhaps using Graphite-OpenCL?

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 83 / 87

mailto:jeremie.salvucci@free.fr
http://frama-c.com/
http://www.lip6.fr/cadna
www.opengpu.net

Conclusion and future work

future work

bug corrections
(in progress) improving the translation of match expressions
minor MELT language and runtime improvements
e.g. simpler program arguments
good LTO support in MELT

more MELT language features (rewriting MELT macro-s à la Scheme,
patterns in let, . . .)
memoizing method lookup
adding more c-types when needed
real GCC passes coded in MELT

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 84 / 87

Conclusion and future work

technical points

LTO⇒ serialization of MELT values
sharing MELT values between several *.o
serialization of closures (but MELT closures know the C name of their routines!)

. . .

Take profit of better gengtype
(generate some runtime code from gtype.state?)

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ♠ 85 / 87

Conclusion and future work

wishes

MELT can be used to experiment new middle-end passes in GCC
It can also be used for specific GCC extensions. For library- or
software-specific MELT extensions to GCC, the best experts are from that
software community

GTK would need several MELT extensions to
1 type-check g_object_set
2 check coding conventions
3 etc

the Linux kernel will benefit from GCC extensions coded in MELT

major free software70 compiled with GCC could benefit from MELT

Long term dream: perhaps pushing MELT into the trunk, e.g. as a help to
developers? MELT as a tree-browser on steroids?71

Or maybe, MELT should stay as a GCC plugin example?
70Intuitively, any large enough ≥ 1MLOC free software could develop its own GCC extensions in

MELT for its own use, and using MELT should be less hard than coding plugins in C!
71The gcc/tree-browser.c is useful for GCC developers. Perhaps MELT may be useful for

them also?

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 86 / 87

Conclusion and future work

To help me...

compile and use MELT

explain me LTO streaming
explain me how to make test-cases (dejagnu scripts for MELT?)
explain me why MELT didn’t exist before?
GCC has a lot of code generators already! (why not in the middle-end?)
suggest better building scheme for MELT (Makefile-s)?

Thanks! Questions?

Basile STARYNKEVITCH Easily extending GCC with MELT October 26, 2010 – GCC Summit, Ottawa ? 87 / 87

	Introduction
	Basic MELT usage and features
	running MELT
	MELT language syntax
	MELT data (things = values + stuff)
	connecting GCC to MELT

	Pattern matching
	Coding passes in MELT
	Conclusion and future work

