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The GCC free compiler is a very large software, compiling source in several languages for many
targets on various systems. It can be extended by plugins, which may take advantage of its power
to provide extra specific functionality (warnings, optimizations, source refactoring or navigation)
by processing various GCC internal representations (Gimple, Tree, ...). Writing plugins in C is a
complex and time-consuming task, but customizing GCC by using an existing scripting language
inside is impractical. We describe MELT, a specific Lisp-like DSL which fits well into existing
GCC technology and offers high-level features (functional, object or reflexive programming, pattern
matching). MELT is translated to C fitted for GCC internals and provides various features to facilitate
this. This work shows that even huge, legacy, software can be a posteriori extended by specifically
tailored and translated high-level DSLs.

1 Introduction

GCC1 is an industrial-strength free compiler for many source languages (C, C++, Ada, Objective C,
Fortran, Go, ...), targetting about 30 different machine architectures, and supported on many operating
systems. Its source code size is huge (4.296MLOC2 for GCC 4.6.0), heterogenous, and still increasing
by 6% annually 3. It has no single main architect and hundreds of (mostly full-time) contributors, who
follow strict social rules 4.

1.1 The powerful GCC legacy

The several GCC [8] front-ends (parsing C, C++, Go . . . source) produce common internal AST (abstract
syntax tree) representations called Tree and Generic. These are later transformed into middle-end inter-
nal representations, the Gimple statements - through a transformation called gimplification. The bulk of
the compiler is its middle-end which operates repeatedly on these Gimple representations5. It contains
nearly 200 passes moulding these (in different forms). Finally, back-ends (specific to the target) work
on Register Transfer Language (RTL) representations and emit assembly code. Besides that, many other

1Gnu Compiler Collection (gcc 4.6.0 released on march 25th 2011) on gcc.gnu.org
24.296 Millions Lines Of source Code, measured with David Wheeler’s SLOCCount. Most other tools give bigger code

measures, e.g., ohcount gives 8.370MLOC of source, with 5.477MLOC of code and 1.689MLOC of comments.
3GCC 4.4.1, released July 22th, 2009, was 3.884MLOC, so a 0.412MLOC = 10.6% increase in 1.67 years
4Every submitted code patch should be accepted by a code reviewer who cannot be the author of the patch, but there is no

project leader or head architect, like Linus Torvalds is for the Linux kernel. So GCC has not a clean, well-designed, architecture.
5The GCC middle-end does not depend upon the source language or the target processor (except with parameters giving

sizeof(int) etc.).

http://creativecommons.org
http://creativecommons.org/licenses/by-sa/3.0/
gcc.gnu.org
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data structures exist within GCC (and a lot of global variables). Most of the compiler code and opti-
mizations work by various transformations on middle-end internal representations. GCC source code is
mostly written in C (with a few parts in C++, or Ada), but it also has several internal C code generators.
GCC does not use parser generators (like flex, bison, etc).

It should be stressed that most internal GCC representations are constantly evolving, and there is
no stability6 of the internal GCC API7. This makes the embedding of existing scripting languages (like
Python, Ocaml, . . . ) impractical (§1.2). Since gcc 4.5 it is possible to enhance GCC through external
plugins.

External plugins can enhance or modify the behavior of the GCC compiler through a defined interface,
practically provided by a set of C file headers, and made of functions, many C macros, and coding con-
ventions. Plugins are loaded as dlopen-ed dynamic shared objects at gcc run time. They can profit from
all the variety and power of the many internal representations and processing of GCC. Plugins enhance
GCC by inserting new passes and/or by responding to a set of plugin events (like PLUGIN FINISH TYPE

when a type has been parsed, PLUGIN PRAGMAS to register new pragmas, . . . ).
GCC plugins can add specific warnings (e.g., to a library), specific optimizations (e.g., transform

fprintf(stdout,...)→ printf(...) in user code with #include <stdio.h>), compute software metrics,
help on source code navigation or code refactoring, etc. GCC extensions or plugins enable using and
extending GCC for non code-generation activities like static analysis [9, 2, 17, 28], threats detection (like
in Two[10], CoverityTM 8, or Astrée[4, 5]), code refactoring, coding rules validation[16], etc. They could
provide any processing taking advantage of the many facilities already existing inside GCC. However,
since coding GCC plugins in C is not easy, a higher-level DSL could help. Because GCC plugins are
usually specific to a narrow user community, shortening their development time (through a higher-level
language) makes sense.

/* A node in a gimple_seq_d. */

struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) gimple_seq_node_d {
gimple stmt;

struct gimple_seq_node_d *prev;

struct gimple_seq_node_d *next; };

(code from gcc/gimple.h in GCC)

Figure 1: example of GTY annotation for Gg-c

Since compilers handle many complex (perhaps circular) data structures for their internal represen-
tations, explicitly managing memory is cumbersome during compilation. So the GCC community has
added a crude garbage collector [11] Gg-c (GCC Garbage Collector): many C struct-ures in GCC code
are annotated with GTY (figure 1) to be handled by Gg-c; passes can allocate them, and a precise 9 mark
and sweep garbage collection may be triggered by the pass manager only between passes. Gg-c does not
know about local pointers, so garbage collected data is live and kept only if it is (indirectly) reachable
from known global or static GTY-annotated variables (data reachable only from local variables would be
lost). Data internal to a GCC pass is usually manually allocated and freed. GTY annotations on types and

6This is nearly a dogma of its community, to discourage proprietary software abuse of GCC.
7GCC has no well defined and documented Application Programming Interface for compiler extensions; its API is just a big

set of header files, so is a bit messy for outsiders.
8See www.coverity.com
9Gg-c is a precise G-C knowing each pointer to handle; using Boehm’s conservative garbage collector with ambigous roots

inside GCC has been considered and rejected on performance grounds.

http://www.coverity.com
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variables inside GCC source are processed by gengtype, a specialized generator (producing C code for
Gg-c allocation and marking routines and roots registration). There are more than 1800 GTY-ed types
known by Gg-c, such as: gimple (pointing to the representation of a Gimple statement), tree (pointer to
a structure representing a Tree), basic block (pointing the representation of a basic block of Gimple-s),
edge (pointing to the data representing an edge between basic blocks in the control flow graph), etc.
Sadly, not all GCC data is handled by Gg-c; a lot of data is still manually micro-managed. We call stuff
all the GCC internal data, either garbage-collected and GTY-annotated like gimple, tree, . . . , or outside
the heap like raw long numbers, or even manually allocated like struct opt pass (data describing
GCC optimization passes).

GCC is a big legacy system, so its API is large and quite heterogenous in style. It is not only made
of data declarations and functions operating on them, but also contains various C macros. In particular,
iterations inside internal representations may be provided by various styles of constructs:

1. Iterator abstract types like (to iterate on every stmt, a gimple inside a given basic block bb)
for (gimple_stmt_iterator gsi = gsi_start_bb (bb);

!gsi_end_p (gsi); gsi_next (&gsi)) {
gimple stmt = gsi_stmt (gsi); /* handle stmt ...*/ }

2. Iterative for-like macros, e.g., (to iterate for each basic block bb inside the current function cfun)
basic_block bb; FOR_EACH_BB (bb) { /* process bb */ }

3. More rarely, passing a callback to an iterating “higher-order” C function, e.g., (to iterate inside
every index tree from ref and call idx infer loop bounds on that index tree)
for_each_index (&ref, idx_infer_loop_bounds, &data);

with a static function bool idx infer loop bounds (tree base, tree *idx, void *dta) called
on every index tree base.

1.2 Embedding an existing scripting language is impractical

Interfacing GCC to an existing language implementation like Ocaml, Python, Guile, Lua, Ruby or some
other scripting language is not realistic 10, because of an impedance mismatch:

1. Most scripting languages are garbage collected, and mixing several garbage collectors is difficult
and error-prone, in particular when both Gg-c and scripting language heaps are intermixed.

2. The GCC API is very big, ill-defined, heterogenous, and evolving significantly. So manually coding
the glue code between GCC and a general-purpose scripting language is a big burden, and would
be obsoleted by a new GCC version when achieved.

3. The GCC API is not only made of C functions, but also of macros which are not easy to call from
a scripting language.

4. Part of the GCC API is very low-level (e.g., field accessors), and would be invoked very often, so
may become a performance bottleneck if used through a glue routine.

5. GCC handles various internal data (notably using hundreds of global variables), some through
GTY-ed Gg-c collected pointers (like gimple seq, edge, . . . ), others with manually allocated data
(e.g., omp region for OpenMP parallel region information) or with numbers mapping some opaque
information (e.g., location t are integers encoding source file locations). GCC data has widely
different types, usage conventions, or liveness.

6. There is no single root type (e.g., a root class like GObject 11 in Gtk) which would facilitate gluing
10The author spent more than a month of work trying in vain to plug Ocaml into GCC!
11See http://developer.gnome.org/gobject/

http://developer.gnome.org/gobject/
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GCC into a dynamically typed language interpreter (à la Python, Guile, or Ruby).

7. Statically typing GCC data into a strongly typed language with type inference like Ocaml or Haskell
is impractical, since it would require the formalization of a type theory compatible with all the
actual GCC code.

8. Easily filtering complex nested data structures is very useful inside compilers, so most GCC exten-
sions need to pattern-match on existing GCC stuff (notably on Gimple or Tree-s).

The MELT (originally meaning “Middle End Lisp Translator”) Domain Specific Language has been
developped to increase, as any high-level DSL does, the programmer’s productivity. MELT has its specific
generational copying garbage collector above Gg-c to address point 1. Oddity of the GCC API (points
2, 3, 4) is handled by generating well fit C code, and by providing mechanisms to ease that C source
code generation. Items 4, 5, 6, 7 are tackled by mixing MELT dynamically typed values with raw GCC

stuff. MELT has a powerful pattern matching ability to handle last point 8, because scripting languages
don’t offer extensible or embeddable pattern matching (on data structures internal to the embedding
application).

MELT is being used for various GCC extensions (work in progress):
• simple warning and optimization like fprintf(stdout,...) detection and transformation (handling

it on Gimple representation is preferable to simple textual replacement, because it cooperates with
the compiler inlining transformation);

• Jérémie Salvucci has coded a Gimple→ C transformer (to feed some other tool);

• Pierre Vittet is coding various domain-specific warnings (e.g., detection of untested calls to fopen);

• the author is developing an extension to generate OpenCL code from some Gimple, to transport
some highly parallel regular (e.g., matrix) code to GPUs;

1.3 MELT = a DSL translated to code friendly with GCC internals

The legacy constraints given by GCC on additional (e.g., plugins’) code suggest that a DSL for extending
it could be implemented by generating C code suitable for GCC internals, and by providing language
constructs translatable into C code conforming to GCC coding style and conventions. Other attempts to
embed a scripting language into GCC (Javascript [9] for coding rules in Firefox, Haskell for enhancing
C++ template meta-programming [1], or Python12 ) have restricted themselves to a tiny part of the GCC

API; Volanschi [29] describes a modified GCC compiler with specialized matching rules.
Therefore, the reasonable way to provide a higher-level domain specific language for GCC ex-

tensions is to dynamically generate suitable C code adapted to GCC’s style and legacy and similar in
form to existing hand-coded C routines inside GCC. This is the driving idea of our MELT domain specific
language and plugin implementation [24, 25, 26]. By generating suitable C code for GCC internals, MELT

fits well into existing GCC technology. This is in sharp contrast with the Emacs editor or the C-- com-
piler [23] whose architecture was designed and centered on an embedded interpreter (E-Lisp for Emacs,
Luaocaml for C--).

MELT is a Lisp-looking DSL designed to work on GCC internals. It handles both dynamically typed
MELT values and raw GCC stuff (like gimple, tree, edge and many others). It supports applicative, object
and reflective programming styles. It offers powerful pattern matching facilities to work on GCC internal
representations, essential inside a compiler. It is translated into C code and offer linguistic devices to
deal nicely with GCC legacy code.

12See David Malcom’s GCC Python plugin announced in http://gcc.gnu.org/ml/gcc/2011-06/msg00293.html

http://gcc.gnu.org/ml/gcc/2011-06/msg00293.html
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2 Using MELT and its runtime.

2.1 MELT usage and organization overview

From the user’s perspective, the GCC compiler enabled with MELT (gccmelt) can be run with a com-
mand as: gcc -fplugin=melt -fplugin-arg-melt-mode=opengpu -O -c foo.c. This instructs gcc

(the gcc-4.6 packaged in Debian) to run the compiler proper cc1, asks it to load the melt.so plu-
gin which provides the MELT specific runtime infrastructure, and passes to that plugin the argument
mode=opengpu while cc1 compiles the user’s foo.c. The melt.so plugin initializes the MELT runtime,
hence itself dlopen-s MELT modules like warmelt*.so & xtramelt*.so. These modules initialize MELT

data, e.g., classes, instances, closures, and handlers. The MELT handler associated to the opengpu mode
registers a new GCC pass (available in xtramelt-opengpu.melt) which is executed by the GCC pass
manager when compiling the file foo.c. This opengpu pass uses Graphite [27] to find optimization
opportunities in loops and should 13 generate OpenCL code to run these on GPUs, transforming the
Gimple to call that generated OpenCL code. The melt.so plugin is mostly hand-coded in C (in our
melt-runtime.[hc] files - 15KLOC, which #include generated files). The MELT modules warmelt*.so
& xtramelt*.so 14 are coded in MELT (as source files warmelt*.melt, . . . , xtramelt*.melt which have
been translated by MELT into generated C files warmelt*.c & xtramelt-*.c, themselves compiled into
modules warmelt*.so . . . ).

The MELT translator (able to generate *.c from *.melt) is bootstrapped so that it exercises
most of its features and its runtime : the translator’s source code is coded in MELT, precisely the
melt/warmelt*.melt files (39KLOC), and the MELT source repository also contains the generated files
melt/generated/warmelt*.c (769KLOC). Other MELT files, like melt/xtramelt*.melt (6KLOC) don’t
need to have their generated translation kept. The MELT translator15 is not a GCC front-end (since it
produces C code for the host system, not Generic or Gimple internal representations suited for the target
machine); and it is even able to dynamically generate, during an gccmelt compiler invocation, some
temporary *.c code, run make to compile that into a temporary *.so, and load (i.e. dlopen) and execute
that - all this in a single gcc user invocation; this can be useful for sophisticated static analysis [25]
specialized using partial evaluation techniques within the analyzer, or just to “run” a MELT file.

The MELT translator works in several steps: the reader builds s-expressions in MELT heap. Macro-
expansion translates them into a MELT AST. Normalization introduces necessary temporaries and builds
a normal form. Generation makes a representation very close to C code. At last that representation is
emitted to output generated C code. There is no optimization done by the MELT translator (except for
compilation of pattern matching, see §4.4).

Translation from MELT code to C code is fast: on a x86-64 GNU/Linux desktop system16, the
6.5KLOC warmelt-normal.melt file is translated into five warmelt-normal*.c files with a total of
239KLOC in just one second (wall time). But 32 seconds are needed to build the warmelt-normal.so

module (with make17 running gcc -O1 -fPIC) from these generated C files. So most of the time is
spent in compiling the generated C code, not in generating it. In contrast to several DSLs persisting their

13In April 2011, the opengpu pass, coded in MELT, is still incomplete in MELT 0.7 svn rev.173182.
14The module names warmelt*.so & xtramelt*.so are somehow indirectly hard-coded in melt-runtime.c but could be

overloaded by many explicit -fplugin-arg-melt-* options.
15The translation from file ana-simple.melt to ana-simple.c is done by invoking gcc -fplugin=melt

-fplugin-arg-melt-mode=translatefile -fplugin-arg-melt-arg=ana-simple.melt . . . on an empty C file empty.c,
only to have cc1 launched by gcc!

16An Intel Q9550 @ 2.83GHz, 8Gb RAM, fast 10KRPM Sata 150Gb disk, Debian/Sid/AMD64.
17So it helps to run that in parallel using make -j; the 32 seconds timing is a sequential single-job make.
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melt_ptr_t meltgc_new_int (meltobject_ptr_t discr_p, long num) {
MELT_ENTERFRAME (2, NULL);

#define newintv meltfram__.mcfr_varptr[0]
#define discrv meltfram__.mcfr_varptr[1]

discrv = (void *) discr_p;
if (melt_magic_discr ((melt_ptr_t) (discrv)) != MELTOBMAG_OBJECT)

goto end;
if (((meltobject_ptr_t)discrv)->obj_num != MELTOBMAG_INT)

goto end;
newintv = meltgc_allocate (sizeof (struct meltint_st), 0);
((struct meltint_st*)newintv)->discr = (meltobject_ptr_t)discrv;
((struct meltint_st*)newintv)->val = num;

end:
MELT_EXITFRAME ();
return (melt_ptr_t) newintv;

}

Figure 2: MELT runtime function boxing an integer

closures18 by serializing a mixture of data and code, MELT starts with an empty heap, so MELT modules’
initialization routines are mostly long and sequential C code initializing the MELT heap.

2.2 MELT runtime infrastructure

The MELT runtime melt-runtime.c is built above the GCC infrastructure, notably Gg-c. However, Gg-

c is not a sufficient garbage collector for MELT values, like closures, lists, tuples, objects, ... As in
most applicative or functional languages, MELT code tends to allocate a lot of temporary values (which
often die quickly). So garbage collection (G-C) of MELT values may happen often, and does need to
happen even inside GCC passes written in MELT, not only between passes. These values are handled
by our generational copying MELT G-C, triggered by the MELT allocator when its birth region is full,
and backed up by the existing Gg-c (so the old generation of MELT G-C is the Gg-c heap). Generational
copying GCs [11] handle quickly dead young temporary values by discarding them at once after having
copied each live young value out of the birth region, but require a scan of all local variables, need to
forward pointers to moved values, a write barrier, and normalization (like the administrative normal
form in [7]) of explicit intermediate values inside calls19. This is awkward in hand-written C code but
easy to generate. Minor MELT G-Cs are triggered before each call to gcc collect (i.e. to the full Gg-c)
to ensure that all live young MELT values have migrated to the old Gg-c heap. Compatibility between our
MELT GC and Gg-c is thus achieved. An array of more than a hundred predefined values contains the
only “global” MELT values (which are global roots for both the MELT GC and Gg-c).

MELT call frames are aggregated as local struct-ures, containing local MELT values, the currently
called MELT closure, and local stuff (like raw tree pointers, etc.). Values inside these call frames are
known to the MELT garbage collector, which scans them and possibly moves them. Expliciting these
call frames facilitates introspective runtime reflection [18, 19, 20] at the MELT level; this might be useful
for some future sophisticated analysis, e.g., in abstract interpretation [2, 3] of recursive functions, as
a widening strategy. Concretely, local MELT values (and stuff) are aggregated in MELT call frames
(represented as generated C local struct-ures) organized in a single-linked list. This also enables the
display of the MELT backtrace stack on errors.

18Ocaml bytecode contains both code and data; GNU { Emacs, CLisp, Smalltalk } persist their entire heap image. But MELT

has no persistent data files, to avoid serializing GCC’s stuff (ie GCC’s native data).
19That is, f (g(x),y) should be normalized as τ = g(x); f (τ,y) with τ being a fresh temporary.
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struct {
int mcfr_nbvar; /* number of MELT local values*/
const char *mcfr_flocs; /* location string for debugging*/
struct meltclosure_st *mcfr_clos; /* current closure*/
struct melt_callframe_st *mcfr_prev; /* link to previous MELT frame */
void *mcfr_varptr[2]; /* local MELT values */

} meltfram__; /* MELT current call frame */
static char locbuf_1591[84]; /* location string */
if (!locbuf_1591[0])

snprintf (locbuf_1591, sizeof (locbuf_1591) - 1, "%s:%d", basename ("gcc/melt-runtime.c"), (int) 1591);
memset (&meltfram__, 0, sizeof (meltfram__));
meltfram__.mcfr_nbvar = (2);
meltfram__.mcfr_flocs = locbuf_1591;
meltfram__.mcfr_prev = (struct melt_callframe_st *) melt_topframe;
meltfram__.mcfr_clos = (((void *) 0));
melt_topframe = ((struct melt_callframe_st *) &meltfram__);

Figure 3: C preprocessor expansion of MELT ENTERFRAME(2, NULL) at line 1591

The figure 2 gives an example of hand-written code following MELT conventions (a function
meltgc new int boxing an integer into a value of given dicriminant and number to be boxed). It uses
the MELT ENTERFRAME macro20, which is expanded by the C preprocessor into the code in figure 3, which
declares and initialize the MELT call frame meltfram . The MELT EXITFRAME () macro occurrence
is expanded into melt topframe = (struct melt callframe st *) (meltfram .mcfr prev); to pop
the current MELT frame. MELT provides a GCC pass checking some of MELT coding conventions in the
hand-written part of the MELT runtime.

The MELT runtime depends deeply upon Gg-c, but does not depend much on the details of GCC’s
main data structures like e.g., tree or gimple or loop : our melt-runtime.c can usually be recompiled
without changes when GCC’s file gimple.h or tree.h changes, or when passes are changed or added in
GCC’s core. The MELT translator files warmelt*.melt (and the generated warmelt*.c files) don’t depend
really on GCC data structures like gimple. As a case in point, the major “gimple to tuple” transition 21

in gcc-4.4, which impacted a lot of GCC files, was smoothly handled within the MELT translator.
The MELT files which are actually processing GCC internal representations (like our

xtramelt-*.melt or user MELT code), that is MELT code implementing new GCC passes, have to change
only when the GCC API changes - exactly like other GCC passes. Often, since the change is compati-
ble with existing code, these MELT files don’t have to be changed at all (but should be recompiled into
modules).

MELT handles two kinds of things: the first-class MELT values (allocated and managed in MELT’s
GC-ed heap) and other stuff, which are any other GCC data managed in C (either generated or hand-
written C code within gccmelt). Informally, Things = Values∪Stuff. So raw long-s, edge-s or tree-s are
stuff, and appear exactly in MELT memory like C-coded GCC passes handle them (without extra boxing).
Variables and [sub-]expressions in MELT code, hence locals in MELT call frames, can be things of either
kind (values or stuff ).

Since Gg-c requires each pointer to be of a gengtype- known type, values are really different from

20The Ocaml runtime has similar macros.
21In the old days of GCC version 4.3 the Gimple representation was physically implemented in tree-s and the C data structure

gimple did not exist yet; at that time, Gimple was sharing the same physical structures as Trees and Generic [so Gimple was
mostly a conventional restriction on Trees] - that is using many linked lists. The 4.4 release added the gimple structure to
represent them, using arrays, not lists, for sibling nodes; this improved significantly GCC’s performance but required patching
many files.
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stuff. There is unfortunately no way to implement full polymorphism in MELT: we cannot have MELT

tuples containing a mix of raw tree-s and MELT objects (even if both are Gg-c managed pointers). This
Gg-c limitation has deep consequences in the MELT language (stuff, i.e. GCC native data, sadly cannot be
first-class MELT values!).

Some parts of the MELT runtime are generated (by a special MELT mode). Various MELT values’
and stuff implementation are described by MELT instances. So adding extra types of values, or interfac-
ing additional GCC stuff to MELT, is fairly simple, but requires a complete re-building of MELT. Their
GTY((...)) struct-ure declarations in C are generated. Lower parts of the MELT runtime (allocating,
forwarding, scanning routines - see chapters 6 & 7 of [11] - for the copying MELT G-C, hash-tables
implementation, . . . ) are also generated. This generated C code is kept in the source repository.

Notice that the distinction between first-class MELT values and plain stuff is essential in MELT, and
is required by current GCC practices (notably its Gg-c collector). Therefore, the MELT language itself
needs to denote them separately and explicitly, and the MELT runtime (and generated code) handles them
differently. In that respect, MELT is not like Lisp, Scheme, Guile, Lua and Python. However, MELT

coders should usually prefer handling values (the “first class citizens”), not raw stuff.

2.3 MELT debugging aids

When generating non-trivial C code, it is important to lower the risk of crashing the generated code 22.
This is achieved by systematically clearing all data (both values and raw stuff ) to avoid uninitialized
pointers (and MELT G-C also requires that), and by carefully coding low-level operations (primitives
§3.4.2, c-matchers §4.3, code chunks §3.4.1) with tests against null pointers.

The generated C code produced by the MELT translator contains many #line directives (suitably
wrapped with #ifdef). In the rare cases when the gdb debugger needs to be used on MELT code (e.g.,
to deal with crashes or infinite loops), it will refer correctly to the originating MELT source file location.
These positions are also written into MELT call frames, to ease backtracing on error.

MELT uses debug printing and assertions quite extensively. If enabled by the
-fplugin-arg-melt-debug program argument to gcc, a lot of debug printing happens : each use
of the debug msg operation displays the current MELT source location, a message, and a value 23. For
debugging stuff data, primitives debugtree, debuggimple, etc. are available. Assertions are provided by
assert msg which takes a message and a condition to check. When the check fails, the entire MELT call
stack is printed (with positions referring to *.melt source files).

When variadic functions will be available in MELT, their first use will support polymorphic debug
printing. A debug “macro” would be expanded into calls to a debug at variading function, which would
get the source location value as its first argument, and the values or stuff to be debug-printed as secondary
variadic arguments.

An older version of MELT could be used with an external probe, which was a graphical program
interacting with cc1 through asynchronous textual protocols. This approach required a quite invasive
patch of GCC’s code itself. The current GCC pass manager and plugin machinery now provides enough
hooks, and future versions of MELT might communicate asynchronously with a central monitor (to be
developed).

22However, it is still possible to make some MELT code crash, for instance by adding bugs in the C form of our code chunks
§3.4.1. In practice, MELT code crashes very rarely; most often it fails by breaking some assertions.

23Values are printed for debug use with MELT message passing through the dbg output & dbg outputagain selectors.
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3 The MELT language and its pecularities

Some familiarity with a Lisp-like language (like Emacs Lisp, Scheme, Common Lisp, etc.) is welcome
to understand this section. Acquaintance with a dynamically typed scripting language like Python, Guile
or Ruby could also help. See the web site gcc-melt.org for more material (notably tutorials) on MELT.

MELT has a Lisp-like syntax because it was (at its very beginning) implemented with an initial “ex-
ternal” MELT to C translator prototyped in Common Lisp. Since then, a lot of newer features have been
progressively added (using an older version of MELT to bootstrap its current version). The Emacs Lisp

language (in the Emacs editor), Guile (the Gnu implementation of Scheme), and machine description files
in GCC back-end are successful examples of other Lisp dialects within Gnu software. Finally, existing
editing modes24 for Lisp are sufficient for MELT.

An alternative infix syntax (code-named Milt) for MELT is in the works; the idea is to have an infix
parser, coded in MELT, for future *.milt files, which is parsed into MELT internal s-expressions (i.e.
into the same instances of class sexpr as the MELT Lisp-like reader does): symbols starting with + or
- are parsed as infix operators (like Ocaml does) with additive precedences, those starting with * or /
have multiplicative precedence, etc.

MELT shares with existing Lisp languages many syntactic and lexical conventions for comments,
indentation, symbols (which may be non alpha-numerical), case-insensitivity, and a lot of syntax (like
if, let, letrec, defun, cond . . . ). As in all Lisp dialects, everything is parenthesized like ( operator

operands ... ) so parenthesis are highly significant. The quote, back-quote, comma and question mark
characters have special significance, so ’a is parsed exactly as (quote a), ?b as (question b) etc.
Like in Common Lisp, words prefixed with a colon like :long are considered as “keywords” and are not
subject to evaluation. Symbols and keywords exist both in source files and in the running MELT heap.

3.1 MELT macro-strings

Since “mixing” C code chunks (§3.4.1) inside MELT code is very important, simple meta-programming
is implemented by a lexical trick 25: macro-strings are strings prefixed with #{ and suffixed with }# and
are parsed specially; these prefix and suffix strings have been chosen because they usually don’t appear in
C code. Within a macro-string, backslash does not escape characters, but $ and sometimes # are scanned
specially, to parse symbols inside macro-strings.
For example, MELT reads the macro-string #{/*$P#A*/printf("a=%ld\n", $A);}# ex-
actly as a list ("/*" p "A*/printf(\"a=%ld\\n\", " a ");") of 5 elements whose 1st,
3rd and 5th elements are strings26 and 2nd and 4th elements are symbols p and a. This is useful when one
wants to mix C code inside MELT code; some macro-strings are several dozens of lines long, but don’t
need any extra escapes (as would be required by using plain strings).

Another example of macro-string is given in the following “hello-world” (complete) MELT program:

;; file helloworld.melt

(code chunk helloworldchunk

#{int i=0; /* our $HELLOWORLDCHUNK */

$HELLOWORLDCHUNK#_label: printf("hello world from MELT\n");
if (i++ < 3) goto $HELLOWORLDCHUNK#_label; }#)

24Emacs mode for Lisp is nearly enough for editing, highlighting and indenting MELT code.
25Inspired by handling of $ in strings or “here-documents” by shells, Perl, Ruby, ...
26The first string has the two characters /* and the last has the two characters );

http://gcc-melt.org/
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The macro-string spans on 3 lines, and contains some C code with the helloworldchunk MELT

symbol. The above helloworld.melt file (of 4 lines) is translated into a helloworld.c file (of 389
lines27 in C). It uses the code chunk construct explained in §3.4.1 below (to emit translated C code).

3.2 MELT values and stuff

Every MELT value has a discriminant (at the start of the memory zone containing that value). As
an exception, nil 28, represented by the C null pointer has conventionally a specific discriminant
discr null reciever. The discriminant of a value is used by the MELT runtime, by Gg-c and in MELT

code to separate them. MELT values can be boxed stuff (e.g., boxed long or boxed tree), closures,
lists, pairs, tuples, boxed strings, . . . , and MELT objects. Several predefined objects, e.g., class class,
discr null receiver . . . , are required by the MELT runtime. The hierarchy of discriminants is rooted
at discr any receiver 29. Discriminants are objects (of class discriminant). Core classes and
discriminants are predefined as MELT values (known by both Gg-c and MELT G-C).

Each MELT object has its class as its discriminant. Classes are themselves objects and are
organized in a single-inheritance hierarchy rooted at class root (whose parent discriminant is
discr any reciever). Objects are represented in C as exactly a structure with its class (i.e. discrim-
inant) obj class, its unsigned hash-code obj hash (initialized once and for all), an unsigned “magic”
short number obj num, the unsigned short number of fields obj len, and the obj vartab[obj len] array
of fields, which are MELT values. The obj num in objects can be set at most once to a non-zero unsigned
short, and may be used as a tag: MELT and Gg-c discriminate quickly a value’s data-type (for marking,
scanning and other purposes) through the obj num of their discriminant. So, safely testing in C if a value
p is a MELT closure is as fast as p != NULL && p->discr->obj num == MELTOBMAG CLOSURE.

MELT field descriptors and method selectors are objects. Every MELT value (object or not, even
nil) can be sent a message, since its discriminant (i.e., its class, if it is an object) has a method map (a
hash table associating selectors to method bodies) and a parent discriminant (or super-class). Message
passing in MELT is similar to those in Smalltalk and Ruby. Method bodies can be dynamically installed
with (install method discriminant selector function) and removed at any time in any discriminant or
class. Method invocations use the method hash-maps (similar to methods’ dictionnaries in Smalltalk) to
find the actual method to run.

The MELT reader produces mostly objects and sometimes other values: S-expressions are parsed as
instances of class sexpr (containing the expression’s source location and the list of its components);
symbols (like == or let or x) as instances of class symbol; keywords like :long or :else as instances
of class keyword; numbers like -1 as values of discr integer etc.

Each stuff (that is, non-value things like long or tree . . . ) have its boxed value counterpart, so boxed
gimple-s are values containing, in addition of their discriminant (like discr gimple), a raw gimple

pointer.
In MELT expressions, literal integers like 23 or strings like "hello\n" refer to raw :long or :cstring

stuff 30, not constant values. To be considered as MELT values they need to be quoted, so (contrarily to
other Lisps) in MELT 2 6≡ ’2 : the plain 2 denotes a raw stuff of c-type :long so is not a value, but the

27With 260 lines of code, including 111 preprocessor directives, mostly #line, and 129 comment or blank lines, and all the
code doing “initialization”.

28As in Common Lisp or Emacs Lisp (or C itself), but not as in Scheme, MELT nil value is considered as false, and every
non-nil value is true.

29discr any receiver is rarely used, e.g., to install catch-all method handlers.
30All :cstring are (const char*) C-strings in the text segment of the executable, so they are not malloc-ed.
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quoted expression ’2 denotes the boxed integer 2 constant value of discr constant integer so they
are not equivalent! As in Lisp, a quoted symbol like ’j denotes a constant value (of class symbol).

To associate things (either MELT objects or GCC stuff, all of the same type) to MELT values, hash-
maps are extensively used: so homogenous hash tables keyed by objects, raw strings, or raw stuff like
tree-s or gimple-s . . . are values (of discriminant discr map objects . . . , discr map trees). While
hash-maps are more costly than direct fields in structures to associate some data to these structures, they
have the important benefit of avoiding disturbing existing data structures of GCC. And even C plugins of
GCC cannot add for their own convenience extra fields into the carefully tuned tree or gimple structures
of GCC’s tree.h or gimple.h.

Aggregate MELT values include not only objects, hash-tables and pairs, but also tuples (a value
containing a fixed number of immutable component values), closures, lists, . . . Lists know their first and
last pairs. Aggregate values of the same kind may have various discriminants. For instance, within a
MELT class (which is itself a MELT object of class class) a field gives the tuple of all super-classes
starting with class root. That tuple has discr class sequence as discriminant, while most other
tuples have discr multiple as discriminant.

Decaying values may help algorithms using memoization; they contain a value reference and a
counter, decremented at each major garbage collection. When the counter reaches 0, the reference is
cleared to nil.

Adding a new important GCC C type like gimple 31 for some new stuff is fairly simple: add (in
MELT code) a new predefined C-type descriptor (like ctype gimple referring to keyword :gimple) and
additional discriminants, and regenerate all of MELT. C-type descriptors (e.g., ctype edge) and value
type descriptors (like valdesc list) contains dozen[s] of fields (names or body chunk of generated C
routines) used when generating the runtime support routines.

The :void keyword (and so ctype void) is used for side-effecting code without results. C-type
keywords (like :void, :long, :tree, :value, :gimple, :gimple seq, etc.) qualify (in MELT source
code) formal arguments, local variables (bound by let, . . . ), etc.

MELT is typed for things: e.g., the translator complains if the +i primitive addition operator (expect-
ing two raw :long stuff and giving a :long result) is given a value or a :tree argument. Furthermore,
let bindings can be explicitly typed (by default they bind a value). Within values, typing is dynamic;
for instance, a value is checked at runtime to be a closure before being applied. When applying a MELT

closure to arguments, the first argument, if any, needs to be a value (it would be the receiver if the closure
is a method for message passing)32, others can be things, i.e. values or stuff. In MELT applications,
the types of secondary arguments and secondary results are described by constant byte strings, and the
secondary arguments or results are passed (in generated C code) as an array of unions. The generated
MELT function prologue (in C) checks that the formal and actual type of secondary arguments are the
same (otherwise, argument passing stops, and all following actual arguments are cleared).

All MELT things (value or stuff ), in particular local variables (or mismatched formals), are initially
cleared (usually by zeroing the whole MELT call frame in the C prologue of each generated routine). So
MELT values are initially () (i.e., nil in MELT syntax), a :tree stuff is initially the null tree (i.e. (tree)0
in C syntax), a :long stuff is initially 0L, a :cstring stuff is initialized to (const char*)0. Notice
that cleared stuff is considered as false in conditional context.

31This kind of radical addition don’t happen often in the GCC community because it usually impacts a lot of GCC files.
32The somehow arbitrary requirement of having the first argument of every MELT function be a value speeds up calls to

functions with one single value argument, and permits using closures as methods without checks: sending a message to a raw
stuff like e.g., a tree won’t work.
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Functions written in MELT (with defun for named functions or lambda for anonymous ones) always
return a value as their primary result (which may be ignored by the caller, and defaults to nil). The first
formal argument (if any) and the primary result of MELT functions should be values (so nested function
calls deal mainly with values). Secondary arguments and results can be any things (each one is either
a value or some stuff ). The (multicall ...) syntax binds primary and secondary results like Common
Lisp’s multiple-value-bind.

3.3 Syntax overview

The following constructs should be familiar (except the last one, match, for pattern matching) since
they look like in other Lisps. Notice that our let is always sequential33. Formals in abstractions 34

are restricted to start with a formal value; this speeds up the common case of functions with a single
value argument, and facilitates installation of any function as method (without checking that the formal
reciever is indeed a value).

List of formal arguments (in lambda, defun etc.) contains either symbols (which are names of formals
bound by e.g., the lambda) like x or discr, or c-type keywords like :value or :long or :gimple . . . . A
c-type keyword qualify all successing formals up to the next c-type keywords, and the default c-type is
:value. For example, the formal arguments list (x y :long n k :gimple g :value v) have 6 formals :
x y v are MELT values, n k are raw long stuff, g is a raw gimple stuff.

Local bindings (in let or letrec) has an optional c-type annotation, then the newly bound symbol,
then the sub-expression bounding it. So (:long x 2) locally binds (in the body of the enclosing let)
the symbol x to the raw long stuff 2, and in the let body x is a raw long variable.

Patterns and pattern matching are explained in §4.

expressions where n≥ 0 and p≥ 0
application (φ α1 ... αn) apply function (or primitive) φ to arguments αi
assignment (setq ν ε) set local variable ν to ε

message passing (σ ρ α1 ... αn) send selector σ to reciever ρ with arguments αi
let expression (let (β1...βn) ε1...εp ε ′) with local sequential bindings βi evaluate side-

effecting sub-expressions ε j and give result of ε ′

sequence (progn ε1...εn ε ′) evaluate εi (for their side effects) and at last ε ′, giving its
result (like the operator , in C)

abstraction (lambda φ ε1...εn ε ′) anonymous function with formals φ and side-
effecting expressions εi, return result of ε ′

pattern matching (match ε χ1 ... χn) match result of ε against match clauses χi, giving
result of last expression of matched clause.

Conditional expressions alter control flow as usual. However, conditions can be things, e.g., the 0

:long stuff is false, other long stuff are true, a gimple stuff is false iff it is the null gimple pointer, etc.
The “else” part ε of an if test is optional. When missing, it is false, that is a cleared thing. Notice that
tested conditions and the result of a conditional expression can be either values or raw stuff, but all the
conditional sub-expressions of a condition should have consistent types, otherwise the entire expression
has :void type.

33So the let of MELT is like the let* of Scheme!
34Notice that lambda abstractions are constructive expressions and may appear in letrec or let bindings.
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conditional expressions where n≥ 0 and p≥ 0
test (if τ θ ε) if τ then θ else ε (like ?: in C)

conditional (cond κ1 ... κn) evaluate conditions κi until one is satisfied
conjunction (and κ1 ... κn κ ′) if κ1 and then κ2 . . . and then κn is “true” (non nil or non zero) then

κ ′ otherwise the cleared thing of same type
disjunction (or δ1 ... δn) δ1 or else δ2 . . . = the first of the δi which is “true” (non nil, or non

zero, ...)

In a cond expression, every condition κi (except perhaps the last) is like (γi εi,1 ... εi,pi ε ′) with
pi ≥ 0. The first such condition for which γi is “true” gets its sub-expressions εi, j evaluated sequentially
for their side-effects and gives the result of ε ′. The last condition can be (:else ε1 ... εn ε ′), is
triggered if all previous conditions failed, and (with the sub-expressions εi evaluated sequentially for
their side-effects) gives the result of ε ′

MELT has some more expressions.
more expressions

loop (forever λ α1 ... αn) loop indefinitely on the αi which may
exit

exit (exit λ ε1 ... εn ε ′) exit enclosing loop λ after side-effects
of εi and result of ε ′

return (return ε ε1 ... εn) return ε as the main result, and the εi as
secondary results

multiple call (multicall φ κ ε1...εn ε ′) locally bind formals φ to main and sec-
ondary result[s] of application or send κ

and evaluate the εi for side-effects and
ε ′ for result

recursive let (letrec (β1...βn) ε1...εp) with [mutually-] recursive constructive
bindings βi evaluate sub-expressions ε j

field access (get field :Φ ε) if ε gives an appropriate object retrieves
its field Φ, otherwise nil

unsafe field access (unsafe get field :Φ ε) unsafe access without check like the
above operation

object update (put fields ε :Φ1 ε1 ... :Φn εn) safely update (if appropriate) in the ob-
ject given by ε each field Φi with εi

unsafe object update (unsafe put fields ε :Φ1 ε1 ...) unsafely update the object given by ε

The unsafe field access unsafe get field is reserved to expert MELT programmers, since it may
crash. The safer variant test that the expression ε evaluates35 to a MELT object of appropriate class
before accessing a field Φ in it. Field updates with put fields are safe 36, with an unsafe but quicker
variant unsafe put fields available for MELT experts.

Mutually recursive letrec bindings should have only constructive expressions.
constructive expressions

list (list α1 ... αn) make a list of n values αi
tuple (tuple α1 ... αn) make a tuple of n values αi
instance (instance κ :Φ1 ε1 ... :Φn εn) make an instance of class κ and n

fields Φi set to value εi

35I.e. test if the value ω of ε is an object which is a direct or indirect instance of the class defining field Φ, otherwise a nil
value is given.

36Update object ω , value of ε , only if it is an object which is a direct or indirect instance of the class defining each field Φi
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Of course lambda expressions are also constructive and can appear inside letrec. Notice that since
MELT is translated into C, and because of runtime constraints, MELT recursion is never handled tail-
recursively so always consume stack space. This also motivates iterative constructions (like forever and
our iterators).

Name defining expressions have a syntax starting with def. Most of them (except defun, defclass,
definstance) have no equivalent in other languages, because they define bindings related to C code
generation. For the MELT translator, bindings have various kinds; each binding kind is implemented as
some subclass of class any binding.

Name exporting expressions are essentially directives for the module system of MELT. Only exported
names are visible outside a module. A module initialization expects a parent environment and produces
a newer environment containing exported bindings. Both name defining and exporting expressions are
supposed to appear only at the top-level (and should not be nested inside other MELT expressions).

expressions defining names
for functions (defun ν φ ε1 ... εn ε ′) define function ν with formal arguments φ and body ε1

... εn ε ′

for classes (defclass ν :super σ :fields

(φ1 . . .φn) )

define class ν of super-class σ and own fields φi

for instances (definstance ι κ : f1 ε1 ... : fn εn) define an instance ι of class κ with each field fi
initialized to the value of εi

for selectors (defselector σ κ [ :formals Ψ ] : f1
ε1 ... : fn εn)

define an selector ι of class κ (usually
class selector) with each extra field fi
initialized to the value of εi (usually no extra fields
are given so n = 0) and with optional formals Ψ

for primitives (defprimitive ν φ :θ η) define primitive ν with formal arguments φ , result c-type
θ by macro-string expansion η

for c-iterators (defciterator ν Φ σ Ψ η η ′) define c-iterator ν with input formals Φ, state symbol
σ , local formals Ψ, start expansion η , end expansion η ′

for c-matchers (defcmatcher ν Φ Ψ σ η η ′) define c-matcher ν with input formals Φ [the matched
thing, then other inputs], output formals Ψ, state symbol
σ , test expansion η , fill expansion η ′

for fun-matchers (defunmatcher ν Φ Ψ ε) define funmatcher ν with input formals Φ, output for-
mals Ψ, with function ε

expressions exporting names
of values (export value ν1 ...) export the names νi as bindings of values (e.g., of

functions, objects, matcher, selector, ...)
of macros (export macro ν ε) export name ν as a binding of a macro (expanded by

the ε function)
of classes (export class ν1 ...) export every class name νi and all their own fields

(as value bindings)

as synonym (export synonym ν ν ′) export the new name ν as a synonym of the existing
name ν ′

Macro-expansion is internally the first step of MELT translation to C: parsed (or in-heap) S-exprs (of
class sexpr) are macro-expanded into a MELT “abstract syntax tree” (a subclass of class source).
This macro machinery is extensively used, e.g., let and if constructs are macro-expanded (to instances
of class source let or class source if respectively.

Field names and class names are supposed to be globally unique, to enable checking their access or
update. Conventionally class names start with class and field names usually share a common unique
prefix in their class. There is no protection (i.e. visibility restriction like private in C++) for accessing
a field.
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All definitions accept documentation annotation using :doc, and a documentation generator mode
produces documentation with-cross references in Texinfo format.

Miscellanous constructs are available, to help in debugging or coding or to generate various C code
depending on compile-time conditions.

expressions for debugging
debug message (debug msg ε µ) debug printing message µ & value ε

assert check (assert msg µ τ) nice “halt” showing message µ when asserted test τ is false
warning (compile warning µ ε) like #warning in C: emit warning µ at MELT translation time and gives

ε

meta-conditionals
Cpp test (cppif σ ε ε ′) conditional on a preprocessor symbol: emitted C code is #if σ code for ε

#else code for ε ′ #endif

Version test (gccif β ε1 ...) the εi are translated only if GCC has version prefix string β

Reflective access to the current and parent environment is possible (but useful in exceptional cases,
since export ... directives are available to extend the current exported environment):

introspective expressions
Parent environment (parent module environment) gives the previous module environment

Current environment (current module environment container) gives the container of the current module’s
environment

3.4 Linguistic constructs to fit MELT into GCC

Several language constructs are available to help fit MELT into GCC, taking advantage of MELT and GCC

runtime infrastructure (notably Gg-c). They usually use macro-strings to provide C code with holes.
Code chunks (§3.4.1) simply permit to insert C code in MELT code. Higher-level constructs describe
how to translate other MELT expressions into C: primitives (§3.4.2) describe how to translate low-level
operations into C; c-iterators (§3.4.3) define how iterative expressions are translated into for-like loops;
c-matchers (§4.3) define how to generate simple patterns (for matching), etc.

3.4.1 Code chunks

Code chunks are simple MELT templates (of :void c-type) for generated C code. They are the lowest
possible way of impacting MELT C code generation, so are seldom used in MELT (like asm is rarely used
in C).

As a trivial example where i is a MELT:long variable bound in an enclosing let,
(code chunk sta

#{$sta# lab: printf("i=%ld\n", $i++); goto $sta# lab; }# )

would be translated to
{sta 1 lab: printf("i=%ld\n", curfnum[3]++); goto sta 1 lab;}
the first time it translated (i becoming curfnum[3] in C), but would use sta 2 lab the second time, etc.
The first argument of code chunk - sta here - is a state symbol, expanded to a C identifier unique to the
code chunk’s translation. The second argument is the macro-string serving as template to the generated
C code. The state symbol is uniquely expanded, and other symbols should be MELT variables and are
replaced by their translation. So the code chunk of state symbol helloworldchunk in §3.1 is translated
into the following C code:
int i=0; /* our HELLOWORLDCHUNK__1 */

HELLOWORLDCHUNK__1_label: printf("hello world from MELT\n");
if (i++ < 3) goto HELLOWORLDCHUNK__1_label; ;
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3.4.2 Primitives

Primitives define a MELT operator by its C expansion. The unary negation negi is defined exactly as :
(defprimitive negi (:long i) :long

:doc #{Integer unary negation of $i. }#
#{(-($i))}# )

Here we specify that the formal argument i is, like the result of negi, a :long stuff. We give an
optional documentation, followed by the macro-string for the C expansion. Primitives don’t have state
variables but are subject to normalization37 and type checking. During expansion, the formals appearing
in the primitive definition are replaced appropriately.

3.4.3 C-iterators

A MELT c-iterator is an operator translated into a for-like C loop. The GCC compiler defines many
constructs similar to C for loops, usually with a mixture of macros and/or trivial inlined functions.
C-iterators are needed in MELT because the GCC API defines many iterative conventions. For exam-
ple, to iterate on every gimple g inside a given gimple seq s GCC mandates (see §1.1) the use of a
gimple simple iterator.

In MELT, to iterate on the :gimpleseq s obtained by the expression σ and do something on ev-
ery :gimple g inside s, we can simply code (let ( (:gimpleseq s σ) ) (each in gimpleseq (s)

(:gimple g) ddo something with g...c)) by invoking the c-iterator each in gimpleseq, with a list of
inputs - here simply (s) - and a list of local formals - here (:gimple g) - as the iterated things.

This c-iterator (a template for such for-like loops) is defined exactly as:
(defciterator each_in_gimpleseq

(:gimpleseq gseq) ;start formals

eachgimplseq ;state

(:gimple g) ;local formals

#{/* start $eachgimplseq: */

gimple_stmt_iterator gsi_$eachgimplseq;

if ($gseq) for (gsi_$eachgimplseq = gsi_start ($gseq);

!gsi_end_p (gsi_$eachgimplseq);

gsi_next (&gsi_$eachgimplseq)) {
$g = gsi_stmt (gsi_$eachgimplseq); }#

#{ } /* end $eachgimplseq*/ }#)

We give the start formals, state symbol, local formals and the “before” and “after” expansion of the
generated loop block. The expansion of the body of the invocation goes between the before and after ex-
pansions. C-iterator occurrences are also normalized (like primitive occurrences are). MELT expressions
using c-iterators give a :void result, since they are used only for their side effects.

3.5 Modules, environments, standard library and hooks

A single *.melt source file38 is translated into a single module loaded by the MELT run-time. The
module’s generated start module melt routine [often quite big] takes a parent environment, executes
the top-level forms, and finally returns the newly created module’s environment. Environments and their
bindings are reified as objects.

37Assuming that x is a MELT variable for a :long stuff, then the expression (+i (negi x) 1) is normalized as let α =

−x,β = α +1 in β in pseudo-code - suitably represented inside MELT (where α,β are fresh gensym-ed variables).
38MELT can also translate into C a sequence of S-expressions from memory, and then dynamically load the corresponding

temporary module after it has been C-compiled.
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Only exported names add bindings in the module’s environment. MELT code can explicitly ex-
port defined values (like instances, selectors, functions, c-matchers, . . . ) using the (export values ...)
construct; macros (or pat-macros [that is pattern-macros producing abstract syntax of patterns]) defini-
tions are exported using the (export macro ...) construct or (export patmacro ...); classes and their
own fields are exported using the (export class ...) construct. Macros and pattern macros in MELT

are expanded into an abstract syntax tree (made of objects of sub-classes of class source, e.g., in-
stances of class source let or of class source apply, . . . ), not into s-expressions (i.e. objects of
class sexpr, as provided by the reader).

Field names should be globally unique: this enables (get field :named name x) to be safely trans-
lated into something like “if x is an instance of class named fetch its :named name field otherwise give
nil”, since MELT knows that named name is a field of class named.

As in C, there is only one name-space in MELT which is technically, like Scheme, a Lisp1 dialect39

(in Queinnec’s terminology [22]). This prompts a few naming conventions: most exported names of a
module share a common prefix; most field names of a given class share the same prefix unique to the
class, etc.

The entire MELT translation process [26] is implemented through many exported definitions which
can be used by expert MELT users to customize the MELT language to suit their needs. Language con-
structs 40 give total access to environments (instances of class environment).

Hooks for changing GCC’s behavior are provided on top of the existing GCC plugin hooks (for in-
stance, as exported primitives like install melt gcc pass which installs a MELT instance describing a
GCC pass and registers it inside GCC).

A fairly extensive MELT standard library is available (and is used by the MELT translator), providing
many common facilities (map-reduce operations; debug output methods; run-time asserts printing the
MELT call stack on failure; translate-time conditionals emitted as #ifdef; . . . ) and interfaces to GCC

internals. Its .texi documentation is produced by a generator inside the MELT translator.
When GCC will provide additional hooks for plugins, making them available to MELT code should

hopefully be quite easy.

4 Pattern matching in MELT

Pattern matching [12, 14, 18, 30] is an essential operation in symbolic processing and formal handling
of programs, and is one of the buying features of high-level programming languages (notably Ocaml
and Haskell). Several tasks inside GCC are mostly pattern matching (like simplification and folding of
constant expressions)41. Code using MELT pattern matching facilities is much more concise than its
(generated or even hand-written) C equivalent.

4.1 Using patterns in MELT

Developers using MELT often need to filter complex GCC stuff (in particular gimple or tree-s) in their
GCC passes coded in MELT. This is best achieved with pattern matching. The matching may fail (if the
data failed to pass the filter) or may extract information from the matched data.

39Each bound name is bound only once, and there are no separate namespaces like in C or Common Lisp.
40Like (current module environment container) and (parent module environment), etc.
41Strangely, GCC has several specialized code generators, but none for pattern matching: so the file gcc/fold-const.c is

hand-written (16KLOC).
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4.1.1 About pattern matching

Patterns are major syntactic constructs (like expressions and let-bindings in Scheme or MELT). In MELT,
a pattern starts with a question mark, which is parsed particularly: ?x is the same as (question x) [it
is the pattern variable x]. ? is 42 the wildcard pattern (matching anything). An expression occurring in
pattern context is a constant pattern. Patterns may be nested (in composite patterns) and occur in match

expressions.
Elementary patterns are ultimately translated into code that tests that the matched thing µ can be

filtered by the pattern π followed by code which extracts appropriate data from µ and fills some locals
with information extracted from µ . Composite patterns need to be translated and optimized to avoid,
when possible, repetitive tests or fills.

4.1.2 An example of pattern usage in gccmelt

Many tasks depend upon the form of [some intermediate internal representation of] user source code,
and require extracting some of its sub-components. For instance, the author has written (in a single day)
a GCC extension in MELT to check simple coding rules in melt-runtime.c, (e.g., in function of figure 2).
When enabled with -fplugin-melt-arg-mode=meltframe, it adds a new pass (after the "ssa" pass43.
of GCC [21]) melt frame pass to GCC. This pass first finds the declaration of the local meltfram in the
following pass execute function:

1 (defun meltframe_exec (pass)

2 (let (

3 (:tree tfundecl (cfun_decl)) (:long nbvarptr 0)

4 (:tree tmeltframdecl (null_tree)) (:tree tmeltframtype (null_tree)) )

5 (each_local_decl_cfun () (:tree tlocdecl :long ix)

6 (match tlocdecl

7 ( ?(tree_var_decl

8 ?(and ?tvtyp ?(tree_record_type_with_fields ?tmeltframrecnam ?tmeltframfields))

9 ?(cstring_same "meltfram__") ?_)

10 (setq tmeltframdecl tlocdecl) (setq tmeltframtype tvtyp)

11 (foreach_field_in_record_type (tmeltframfields) (:tree tcurfield)

12 (match tcurfield

13 ( ?(tree_field_decl

14 ?(tree_identifier ?(cstring_same "mcfr_varptr"))

15 ?(tree_array_type ?telemtype

16 ?(tree_integer_type_bounded ?tindextype

17 ?(tree_integer_cst 0)

18 ?(tree_integer_cst ?lmax)

19 ?tsize)))

20 (setq tmeltframvarptr tcurfield) (setq nbvarptr lmax)))))

21 ( ?_ (void))))

The let line 2 spans the entire MELT function meltframe exec, with bindings lines 3 & 4 for
tfundecl, nbvarptr, tmeltframdecl & tmeltframtype locals. The each local decl cfun is a c-
iterator (iterating -lines 5 to 11- on the Tree-s representing the local declarations in the function). The
match expression filters the current local declaration tlocdecl (lines 7-11). When it is a variable
declaration (line 7) whose type matches the sub-pattern line 8 and whose name (line 9) is exactly
meltfram , we assign (line 10) appropriately tmeltframdecl & tmeltframtype, and we iterate
(line 11) on its fields to find, by the match (lines 12-21), the declaration of field mcfr varptr (in the

42? can be pronounced as “joker”
43ssa means Static Single Assignment, so at that stage the code is represented in Gimple/SSA form, so each SSA variable is

assigned once!
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C code), and its array index upper bound lmax, assigning them (line 20) to locals tmeltframvarptr &
nbvarptr. Otherwise, using the wildcard pattern ? , we give a :void result for the match of tlocdecl
(line 21).

Once the declaration of meltfram and of its mcfr varptr field has been found44 in the current
function (given by cfun inside GCC), we iterate on each basic block bb of that function, and on each
gimple statement g of that basic block, and we match that statement g to find assignments to or from
meltfram .mcfr varptr[κ] where κ is some constant integer index:

22 (each_bb_cfun () (:basic_block bb :tree fundecl)

23 (eachgimple_in_basicblock (bb)

24 (:gimple g)

25 (match g

26 ( ?(gimple_assign_single

27 ?(tree_array_ref ?(tree_component_ref tmeltframdecl tmeltframvarptr)

28 ?(tree_integer_cst ?idst))

29 ?(tree_array_ref ?(tree_component_ref tmeltframdecl tmeltframvarptr)

30 ?(tree_integer_cst ?isrc)))

31 dhandle assign ‘‘meltfram__.mcfr_varptr[idst ] = meltfram__.mcfr_varptr[isrc ];’’c)
32 ( ?(gimple_assign_single

33 ?(tree_array_ref ?(tree_component_ref tmeltframdecl tmeltframvarptr)

34 ?(tree_integer_cst ?idst))

35 ?rhs)

36 dhandle assign ‘‘meltfram__.mcfr_varptr[idst ] = rhs ;’’c)
37 ( ?(gimple_assign_single ?lhs

38 ?(tree_array_ref ?(tree_component_ref tmeltframdecl tmeltframvarptr)

39 ?(tree_integer_cst ?isrc)))

40 dhandle assign ‘‘lhs = meltfram__.mcfr_varptr[isrc ];’’c)

The gimple g is matched against the most filtering pattern (lines 26-30, for assignments like
“meltfram .mcfr varptr[idst ] = meltfram .mcfr varptr[isrc ];” ) first, then against the more
general patterns -for “meltfram .mcfr varptr[idst ] = rhs ;” where rhs is any simple operand-
lines 32-36, and for “lhs = meltfram .mcfr varptr[isrc ];” lines 37-40. The MELT programmer
should order his matching clauses from the more specific to the more general.

Other code (not shown here) in function meltframe exec remembers all left-hand side and right-hand
side occurences of meltfram .mcfr varptr[κ], and issues a warning when such a slot is not used.

We see that a match is made of several match-cases, tested in sequence until a match is found. Each
case starts with a pattern, followed by sub-expressions which are computed with the pattern variables
of the case set appropriately by the matching of the pattern; the last such sub-expression is the result of
the entire match. Like other conditional forms in MELT, match expressions can give any thing (stuff,
e.g., :long . . . or even :void, or value) as their result. Patterns may be nested like the tree var decl or
tree record type above. All the locals for pattern variables in a given match-case are cleared (before
testing the pattern). It is good style to end a match with a catch-all wildcard ? pattern.

A pattern is usually composite (with nested sub-patterns) and has a double role: first, it should test
if the matched thing fits; second, when it does, it should extract things and transmit them to eventual
sub-patterns; this is the fill of the pattern. The matching of a pattern should conventionally be without
side-effects (other than the fill, i.e. the assignment of pattern variables).

Patterns may be non-linear: in a matching case, the same pattern variable can occur more than once;
then it is set at its first occurrence, and tested for identity45 with == in the generated C code on all

44A warning is issued if meltfram or mcfr varptr has not been found.
45We don’t test for equality of values or other things, knowing that λ -term equality is undecidable, and acknowledging that

deep equality compare of ASTs like tree or gimple is too expensive.
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the following occurrences. This is useful in patterns like ?(gimple assign single ?var ?var) to find
assignments of a variable var to itself.

4.2 Pattern syntax overview

A pattern π may match some matched thing µ , or may fail. It the matching succeeds, sub-patterns may
be matched, and pattern variables may become bound. The thing bound by some pattern variable is
checked in following occurrences of the same pattern variables and is available inside the match-clause
body.

Patterns may be one of:

• expressions ε (e.g., constant literals) are (degenerated) patterns. They match the matched data µ iff ε

== µ (for the C sense of equality, which for pointers is their identity).

• The wildcard noted ? matches everything (every value or stuff ) and never fails.

• a pattern variable ?ν matches µ if it was unset (by a previous [sub-]matching of the same ?ν). In
addition, it is then bound to µ . If the pattern variable was previously set, it is tested for identity
(with equality in the C sense).

• most patterns are matcher patterns ?(m ε1 ... εn π1 ... πp) where the n ≥ 0 expressions εi

are input parameters to the matcher m and the π j sub-patterns are passed extracted data. The
matcher is either a c-matcher (declaring how to translate that pattern to C code) or it is a fun-
matcher (matching is done by a MELT function returning secondary things).

• instance patterns are like ?(instance κ :Φ1 π1 ... :Φn πn); the matched µ is an object of [a
sub-] class κ whose field Φi matches sub-pattern πi.

• conjunctive patterns are ?(and π1 ... πn) and they match µ iff every πi in sequence matches µ;
notice that when some πi is a pattern variable ?ν that variable is matched and µ should match the
further π j (with j > i) with ν appropriately bound to µ . (This generalizes the as keyword inside
Ocaml patterns).

• disjunctive patterns are ?(or π1 ... πn) and they match µ if one of the πi matches µ .

4.3 C-matchers and fun-matchers

The c-matchers are one of the building blocks of patterns - much like primitives are one of the build-
ing blocks of expressions. Like primitives, c-matchers are defined as a specialized C code generation
template. In the example above (§4.1.2), most composite patterns involve c-matchers: tree var decl,
tree record type and cstring same are C-matchers.

Like for every pattern, a C-matcher defines how the pattern using it should perform its test, and then
how it should do its fill. A simple example of a C-matcher is cstring same: some :cstring stuff σ

matches the pattern ?(cstring same "fprintf") iff σ is the same as the const char* string "fprintf"
given as input to our c-matcher. This c-matcher has a test part, but no fill part (because used without
sub-patterns).
(defcmatcher cstring_same (:cstring str cstr) () strsam

:doc #{The $CSTRING SAME c-matcher matches a string $STR iff it equals the constant string $CSTR.

The match fails if $STR is null or different from $CSTR. }#
#{ /*$STRSAM test*/ ($STR != (const char*)0 && $CSTR != (const char*)0 && !strcmp($STR, $CSTR)) }# )

Notice that the state symbol strsam is used inside a comment, to uniquely identify each occurrence in
the generated C, and that we take care of testing against null const char* pointers to avoid crashes.

A more complex (and GCC specific) example is the gimple assign single c-matcher (to filter single
assignments in compiled code). It defines both a testing and a filling expansion using two macro-strings:
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(defcmatcher gimple_assign_single

(:gimple ga) (:tree lhs rhs) gimpassi

#{ /*$GIMPASSI test*/($GA && gimple_assign_single_p ($GA)) }#
#{ /*$GIMPASSI fill*/ $LHS = gimple_assign_lhs ($GA); $RHS = gimple_assign_rhs1($GA); }# )

Here ga is the matched gimple, and lhs & rhs are the output formals: they are assigned in the fill
expansion to transmit tree-s to sub-patterns!

C-matchers are a bit like Wadler’s notion of Views [30], but are expanded into C code. MELT also
has fun-matchers which similarly are views defined by a MELT function returning a non-nil value if the
test succeeded with several secondary results giving the extracted things to sub-patterns. For example
the following code defines a fun-matcher isbiggereven46 such that the pattern ?(isbiggereven µ π)

matches a :long stuff σ iff σ is a even number, greater than the number µ , and σ/2 matches the sub-
pattern π . We define an auxiliary function matchbiggereven to do the matching [we could have used
a lambda]. If the match succeeds, it returns a true (i.e. non nil) value (here fmat) and the integer to be
matched with π . Its first actual argument is the fun-matcher isbiggereven itself. The testing behavior of
the matching function is its first result (nil or not), and the fill behavior is through the secondary results.

(defun matchbiggereven (fmat :long s m)

; fmat is the funmatcher, s is the matched σ, m is the minimal µ

(if (==i (%iraw s 2) 0)

(if (>i s m) (return fmat (/iraw m 2)))))

(defunmatcher isbiggereven (:long s m) (:long o) matchbiggereven)

The fun-matcher definition has an input formals list and an output formal list, together defining the
expected usage of the fun-matcher operator in patterns.

Both c-matchers and fun-matchers can also define what they mean in expression context (not in
pattern one). So the same name can be used for constructing expressions and for destructuring patterns.

4.4 Implementing patterns in MELT

Designing and implementing patterns in MELT was quite difficult, because a good translation of pattern
matching should :

• factorize, when possible, common sub-patterns, to avoid testing twice the same thing.

• share, when appropriate, data extracted from subpatterns.

• preferably re-use the many temporary locals used by the translation of the match, to lower the
current MELT stack frame size.

Our first implementation of pattern translation to C is quite naive, and uses simple memoization
techniques to factorize sub-patterns or share extracted data.

A better implementation of the pattern translator builds explicitly a directed graph (with shared nodes
for tests and data), like figure 4. The graph has data nodes (for temporary variables for [sub-]matched
things, or for boolean flags internal to the match) and elementary control steps. These steps are either
tests (with both a “then” and an “else” jumps to other steps) or computations (usually with a single jump
to a successor step). Some steps just set an internal boolean flag, or compute the conjunction of other
flags. Other steps represent the testing or the filling parts of c-matchers or fun-matchers. Final success
steps correspond to sub-expressions in the body of the matched clause and are executed if a flag is set.

46Our isbiggereven could also be defined as a c-matcher!
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For instance a simple match (where v is the matched value) like below is translated into the complex
internal graph 47 given in figure 4:

(match v

( ?(instance class_symbol :named_name ?synam)

(f synam))

( ?(instance class_container :container_value ?(and ?cval ?(integerbox_of ?_)))

(g cval)))

A more complex match like (match tcurfield ...) of §4.1.2 code line 12-20 produces about 20 match
steps and 12 match data. This enhanced pattern matching is not entirely implemented at time of writing:
the generation of the control graph for the match is implemented, but its translation into C is incomplete.

5 Conclusions and future work

Enhancing a legacy huge software with a domain specific language or scripting language is always a
major challenge (§1), since incorporating a DSL inside a software is a major architectural design de-
cision which should be taken early. Mature big software like GCC have their coding habits, memory
management strategies and data organization which makes it very difficult to embed an existing scripting
language (like Python, Ocaml, Ruby, ...).

We have shown that adding a high-level DSL to a big software like GCC is still possible, by designing
a run-time system §2 compatible with the existing infrastructure (notably Gg-c) and most importantly, by
having the DSL deal both with boxed values and raw existing stuff in §3.2. Translating the DSL to the
language (with its habits) used in that big software (C for GCC) enables high-level language constructs
in our DSL. We have described a set of language constructs in §3.4 (c-matchers, primitives, c-iterators,
. . . ) which give templates for C code generation.

Our empirical approach of designing and implementing a DSL like MELT to fit into a large software
like GCC, could probably be re-used for adding DSLs inside other huge mature software projects: de-
signing a runtime suitable for such a project, having several sorts of things (values and stuff ), generating
code in the style of the existing legacy, and defining adequate language constructs giving code-generating
templates.

Future work within MELT is mostly using this DSL to build interesting GCC extensions. P. Vittet has
started in May 2011 a Google Summer of Code project to add specific warnings into GCC using MELT. A.
Lissy considers using it for Linux kernel [13] code analysis. The opengpu mode should be completed.
Also, some language features can be added or improved:

1. variadic functions, possibly provided by a :rest keyword similar to Common Lisp’s &rest. These
should be very useful for debugging and tracing messages.

2. adding backtracking or iterating pattern constructs; for instance to be able to have a pattern for any
:gimple seq stuff containing at least one gimple matching a given sub-pattern.

3. adding a nice usable and hygenic macro system, inspired by Scheme’s defsyntax

4. performance improvements might be achieved by sometimes translating MELT function calls into
a C function call whose signature mimicks the MELT function signature.

47To debug the pattern-match translator, MELT is generating a graph to be displayed with GraphViz. We have edited it (by
removing details like source code location) for clarity.
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5. a message caching machinery, where every MELT message passing occurrence would use a cache
(keeping the last class of the sending).

6. a central monitor, which would communicate with parallel gccmelt compilations through asyn-
chronous textual protocols.

More generally, making MELT more high-level and more declarative (in J.Pitrat’s [19, 20] sense) to
be able to express GCC passes easily and concisely is an interesting challenge, and could be transposed
to other legacy software.
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