
MELT, a Translated Domain Specific Language
Embedded in the GCC Compiler

Basile STARYNKEVITCH
basile@starynkevitch.net (or basile.starynkevitch@cea.fr)

September 6th 2011 – DSL 2011 conference
(LABRI - Talence [near Bordeaux], France)

These slides are under a Creative Commons Attribution-ShareAlike 3.0 Unported License

creativecommons.org/licenses/by-sa/3.0 and downloadable fromgcc-melt.org
Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 1 / 31

mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr
http://creativecommons.org/licenses/by-sa/3.0/
http://gcc-melt.org/

Table of Contents

1 introduction
disclaimer
about GCC
extending GCC thru plugins
extending GCC with DSLs

2 MELT language and implementation
motivations and major features
MELT values and GCC stuff
some constructs related to C code generation

3 pattern matching in MELT
pattern matching example
matching and patterns
matchers
translating pattern matching

4 conclusion

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 2 / 31

introduction

Contents

1 introduction
disclaimer
about GCC
extending GCC thru plugins
extending GCC with DSLs

2 MELT language and implementation
motivations and major features
MELT values and GCC stuff
some constructs related to C code generation

3 pattern matching in MELT
pattern matching example
matching and patterns
matchers
translating pattern matching

4 conclusion

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 3 / 31

introduction disclaimer

disclaimer: opinions are mine only

Opinions expressed here are only mine!
not of my employer (CEA, LIST)
not of the Gcc community
not of funding agencies (e.g. DGCIS)1

I don’t understand or know all of Gcc ;
there are many parts of Gcc I know nothing about.

Beware that I have some strong technical opinions which are not the view
of the majority of contributors to Gcc.

I am not a lawyer ⇒ don’t trust me on licensing issues

1Work on Melt have been possible thru the GlobalGCC ITEA and OpenGPU FUI
collaborative research projects, with funding from DGCIS

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ♠ 4 / 31

introduction about GCC

GCC (Gnu Compiler Collection) gcc.gnu.org

perhaps the most used compiler : your phone, camera, dish washer, printer, car,
house, train, airplane, web server, data center, Internet have Gcc compiled code

[cross-] compiles many languages (C, C++, Ada, Fortran, Go, Objective C, Java, ...)
on many systems (GNU/Linux, Hurd, Windows, AIX, ...) for dozens of target
processors (x86, ARM, Sparc, PowerPC, MIPS, C6, SH, VAX, MMIX, ...)

free software (GPLv3+ licensed, FSF copyrighted)

huge (5 or 8? MLOC), legacy (started in 1985) software
still alive and growing (+6% in 2 years)

big contributing community (≈ 400 “maintainers”, mostly full-time professionals)

peer-reviewed development process, but no main architect
⇒ (IMHO) “sloppy” software architecture, not fully modular yet

various coding styles (mostly C & C++ code, with some generated C code)

industrial-quality compiler with powerful optimizations and
diagnostics (lots of tuning parameters and options...)

Current version (july 2011) is gcc-4.6.1

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 5 / 31

http://gcc.gnu.org/

introduction about GCC

Gcc & Melt

Generic / Tree

internal representation[s]
Link Time
Optimizations

GIM
PLE

internal representation[s]

bee.c

foo.cc

bar.f90

cat.adb

dog.o

(LTO)

C front-end

C++ front-end

Fortran front-end

Ada front-end

LTO "front-end"

R
TL i.r.

bee.o

foo.o

bar.o

cat.o

dog.o

250 passes in GCC!

yourpass.meltmelt.so yourpass.so

Melt runtime & translator

GCC MELT

warmelt*.so

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 6 / 31

introduction about GCC

cc1 organization

libiberty
utilities

pass
manager

other
utilities

foo.c le
xe

r,
 p

re
p
ro

c

to
ke

n
s

p
a
rs

e
r

g
e
n
e
ri

c
tr

e
e
s

g
im

p
lifi

e
r

g
im

p
le

s

simple
gimple
passes

g
im

p
le

s
..

.
cf

g
,

ss
a
,

..
.

inter-
procedural

gimple
passes

front-end middle-end

R
T
L

g
e
n

e
ra

to
r

RTL

RTL
optim.
passes

RTL
register allocator
instr. scheduler
peephole optim.

RTL passesa
sm

 e
m

it
te

r

RTL
back-end

foo.s

cc1
overview

Gcc is really cc1
3 layers : front-ends→ a
common middle-end→ back-ends

accepting plugins
utilities & (meta-programming) C
code generators
internal representations
(Generic/Tree, Gimple[/SSA], CFG ...)

pass manager
Ggc (= Gcc garbage collection)

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 7 / 31

introduction about GCC

Ggc (= Gcc garbage collection)

compilers handle complex circular data-structures
⇒ they need a Garbage Collector

Ggc is a simple mark & sweep precise garbage collector
explicitly invoked between passes (by pass manager)

Ggc don’t handle local pointers (while other G-Cs often do)

not run inside passes (even with memory pressure by lots of allocation)

started as a quick hack to manage long-living Gcc typed data (common to
several passes); most Gcc representations are handled by Ggc.
using GTY annotations on [≈ 1800] data structures & global variables :
/* Mapping from indices to trees. */ // from lto-streamer.h
struct GTY(()) lto_tree_ref_table {

/* Array of referenced trees . */

tree * GTY((length ("%h.size"))) trees;
/* Size of array. */

unsigned int size; };

gengtype code generator produces marking routines from GTY annotations

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 8 / 31

introduction extending GCC thru plugins

plugins and extensibility

infrastructure for plugins started in gcc-4.5 (april 2010)

cc1 can dlopen user plugins2

plugin hooks provided:
1 a plugin can add its own new passes (or remove some passes)
2 a plugin can handle events (e.g. Ggc start, pass start, type declaration)
3 a plugin can accept its own #pragma-s or __attribute__ etc...
4 . . .

plugin writers need to understand Gcc internals
plugin may provide customization and application- or project- specific
features:

1 specific warnings (e.g. for untested fopen ...)
2 specific optimizations (e.g. fprintf(stdout, ...) → printf(...)
3 code refactoring, navigation help, metrics
4 etc etc . . .

coding plugins in C may be not cost-effective
higher-level languages are welcome!

2Gcc plugins should be free software, GPLv3 compatible
Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 9 / 31

introduction extending GCC with DSLs

extending GCC with an existing scripting language

A nearly impossible task, because of impedance mismatch:
rapid evolution of Gcc

using a a scripting language like Ocaml, Python3 or Javascript4 is difficult,
unless focusing on a tiny part of Gcc

mixing several unrelated G-Cs (Ggc and the language one) is error-prone
the Gcc internal API is ill-defined, and has non “functional” sides:

1 extensive use of C macros
2 ad-hoc iterative constructs
3 lots of low-level data structures (possible performance cost to access them)

the Gcc API is huge, and not well defined (a bunch of header files)
needed glue code is big and would change often
Gcc extensions need pattern-matching (on existing Gcc internal
representations like Gimple or Tree-s) and high-level programming
(functional/applicative, object-orientation, reflection).

3See Dave Malcom’s Python plugin
4See TreeHydra in Mozilla

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 10 / 31

MELT language and implementation

Contents

1 introduction
disclaimer
about GCC
extending GCC thru plugins
extending GCC with DSLs

2 MELT language and implementation
motivations and major features
MELT values and GCC stuff
some constructs related to C code generation

3 pattern matching in MELT
pattern matching example
matching and patterns
matchers
translating pattern matching

4 conclusion

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 11 / 31

MELT language and implementation motivations and major features

Why MELT?

embedding an existing DSL [implementation] is inpractical.

re-implementing a dynamic language (e.g. Python, Lua, or Scheme-like) don’t fit well
into Gcc practice

designing a statically typed language [with type inference] would require type
formalization of Gcc (intractable).

Melt5 is an ad-hoc Lisp-like domain specific language translated to C code
(suitable with Gcc), to develop Gcc extensions

Melt can handle existing native Gcc stuff (without boxing) and [boxed] Melt
values

Melt provides linguistic devices describing how C is generated

Melt has high-level programming traits for functional/applicative, object
oriented, reflective programming styles

Melt has extensible pattern-matching compatible with Gcc internal
representations

Melt [Ggc compatible] runtime and implementation was incrementally
co-designed with the language (bootstrapped translator)

5originally for “Middle End Lisp Translator”
Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 12 / 31

MELT language and implementation motivations and major features

MELT implementation : translator

Melt translator (Melt→ C)
implemented in Melt (so exercises well most of Melt)
(initially, a sub-set was translated by a Lisp program)

svn source code repository contains both Melt source [40 kloc] (of the
translator) and its C translation [1200 kloc]

translation (Melt→ C) is quick: the bottleneck is the compilation of the
generated C code
can translate in-memory Melt expressions (inside Melt heap) -or a
*.melt file- to C
co-designed with Melt runtime: generated C code respects runtime
requirements

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 13 / 31

MELT language and implementation motivations and major features

MELT implementation : runtime and utilities

Melt runtime [20 kloc of C, including utilities]

Melt copying garbage collector for Melt values
copy into Ggc heap - partly Melt generated

runs make to compile generated C into *.so

dlopen-s Melt modules
provides Gcc plugin hooks
boxing [mostly Melt generated] of stuff into Melt values

Melt utilities
“standard” library (in Melt)
glue (in Melt), e.g. for pattern matching Gcc trees or gimples
small Gcc passes in Melt, e.g. pass checking Melt runtime
more to come (OpenCL generation)

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 14 / 31

MELT language and implementation MELT values and GCC stuff

MELT values and GCC stuff

Melt deals with two kinds of things:
1 Melt first-class (dynamically typed) values

objects, tuples, lists, closures, boxed strings, boxed gimples, boxed trees, homogenous
hash-tables. . .

2 existing Gcc stuff (statically and explicitly typed)
raw long-s, tree-s, gimple-s as already known by Gcc . . .

Essential distinction (mandated by lack of polymorphism of Ggc):

Things = Values ∪ Stuff

Melt code explicitly annotates stuff with c-types like :long, :tree . . . (and
:value for values, when needed).
handling Melt values is preferred (and easier) in Melt code.
Melt argument passing is typed

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 15 / 31

MELT language and implementation MELT values and GCC stuff

Melt copying garbage collection for values

copying Melt GC well suited for fast allocation6 and many temporary
(quickly dying) values
live young values copied into Ggc heap (but needs write barrier)
Melt GC requires normalization z := φ(ψ(x), y)→ τ := ψ(x); z := φ(τ, y)
Melt GC handles locals and may trigger Ggc at any time
well suited for generated C code
hand-written code for Melt value is cumbersome
old generation of values is the Ggc heap→ built-in compatibility of Melt
GC with Ggc

Melt call frames are known to both Melt GC & Ggc
call frames are singly-linked struct-ures.

6Melt values are allocated in a birth region by a pointer increment; when the birth
region is full, live values are copied out, into Ggc heap, then the birth region is
de-allocated.

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 16 / 31

MELT language and implementation MELT values and GCC stuff

Melt value taxonomy

discr

gimple

boxed gimple

3-tuple

discr

value 1

value 2

value 3

3 (length)

class

field 1

field 2

field 3

3
(#fields)

30017
(magic)

object

discr hd tl discr hd tl

pair pair

discr hd

pair

discr first lastlist

GCC MELT values

 hash 0x57de2f

values boxing some stuff
objects (single-inheritance; classes
are also objects)

tuples, lists and pairs
closures and routines
homogenous hash-tables (e.g.
all keys are tree stuff, associated to
a non-null value)

etc . . .

Each value has a discriminant
(which for an object is its class).

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 17 / 31

MELT language and implementation some constructs related to C code generation

primitives and macro-strings

Definition of (stuff) addition:

(defprimitive +i (:long a b) :long
#{($A) + ($B)}#)

Macro-strings #{...}# mix C code with Melt symbols $A, used as “templates”

Primitives have a typed result and arguments.

Since locals are initially cleared, many Gcc related primitives test for null (e.g.
tree or gimple) pointers, e.g.

(defprimitive gimple_seq_first_stmt (:gimple_seq gs) :gimple
#{(($GS)?gimple_seq_first_stmt(($GS)):NULL)}#)

:void primitives translate to C statement blocks; other primitives are
translated to C expressions

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 18 / 31

MELT language and implementation some constructs related to C code generation

“hello world” in Melt with a code chunk

(code_chunk hello ;;state symbol
#{int $HELLO#_cnt =0;
$HELLO#_lab:printf("hello world %d\n",$HELLO#_cnt++);
if ($HELLO#_cnt <2) goto $HELLO#_lab;}#)

The “state symbol” is expanded to a unique C identifier (e.g. HELLO_1 the first time,
HELLO_2 the second one, etc...), e.g. generates in C

int HELLO_1_cnt =0;
HELLO_1_lab:printf("hello world %d\n", HELLO_1_cnt++);
if (HELLO_1_cnt <2) goto HELLO_1__lab;

State symbols are really useful to generate unique identifiers in nested
constructions like iterations.

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 19 / 31

MELT language and implementation some constructs related to C code generation

c-iterators to generate iterative statements
Using an c-iterator
;; apply a function f to each boxed gimple in a gimple seq gseq
(defun do_each_gimpleseq (f :gimple_seq gseq)
(each_in_gimpleseq
(gseq) ;; the input of the iteration
(:gimple g) ;; the local formals
(let ((gplval (make_gimple discr_gimple g)))
(f gplval))))

Defining the c-iterator
(defciterator each_in_gimpleseq

(:gimple_seq gseq) ;start formals
eachgimplseq ;state symbol
(:gimple g) ;local formals
;;; before expansion
#{/*$EACHGIMPLSEQ*/ gimple_stmt_iterator gsi_$EACHGIMPLSEQ;
if ($GSEQ) for (gsi_$EACHGIMPLSEQ = gsi_start ($GSEQ);

!gsi_end_p (gsi_$EACHGIMPLSEQ);
gsi_next (&gsi_$EACHGIMPLSEQ)) {

$G = gsi_stmt (gsi_$EACHGIMPLSEQ); }#
;;; after expansion
#{ } }#)

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 20 / 31

pattern matching in MELT

Contents

1 introduction
disclaimer
about GCC
extending GCC thru plugins
extending GCC with DSLs

2 MELT language and implementation
motivations and major features
MELT values and GCC stuff
some constructs related to C code generation

3 pattern matching in MELT
pattern matching example
matching and patterns
matchers
translating pattern matching

4 conclusion

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 21 / 31

pattern matching in MELT pattern matching example

Pattern matching example: Talpo by Pierre Vittet

;;detect a gimple cond with the null pointer
;;the cond can be of type == or !=
;;returns the lhs part of the cond (or boxed null tree if no match)
(defun test_detect_cond_with_null (useless :gimple g)

(match g
(?(gimple_cond_notequal ?lhs

?(tree_integer_cst 0))
(return (make_tree discr_tree lhs))

)
(?(gimple_cond_equal ?lhs

?(tree_integer_cst 0))
(return (make_tree discr_tree lhs))

)
(
?_

(return (make_tree discr_tree (null_tree))))))

Patterns start with ?, so ?_ is the wildcard (joker). ?lhs is a pattern variable.

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 22 / 31

pattern matching in MELT matching and patterns

What match does?

syntax is (match ε κ1 . . . κn) with ε an expression giving µ and κj are
matching clauses considered in sequence
the match expression returns a result (some thing, perhaps :void)
it is made of matching clauses (πi εi,1 . . . εi,ni ηi), each starting with a
pattern7 πi followed by sub-expressions εi,j ending with ηi

it matches (or filters) some thing µ
pattern variables are local to their clause, and initially cleared
when pattern πi matches µ the expressions εi,j of clause i are executed in
sequence, with the pattern variables inside πi locally bound. The last
sub-expression ηi of the match clause gives the result of the entire match
(and all ηi should have a common c-type, or else :void)
if no clause matches -this is bad taste, usually last clause has the ?_
joker pattern-, the result is cleared
a pattern πi can match the thing µ or fail

7expressions, e.g. constant litterals, are degenerate patterns!
Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 23 / 31

pattern matching in MELT matching and patterns

pattern matching rules

rules for matching of pattern π against thing µ:
the joker pattern ?_ always match
an expression (e.g. a constant) ε (giving µ′) matches µ iff (µ′ == µ) in C
parlance
a pattern variable like ?x matches if

x was unbound; then it is bound (locally to the clause) to µ
or else x was already bound to some µ′ and (µ′ == µ) [non-linear patterns]
otherwise (x was bound to a different thing), the pattern variable ?x match fails

a matcher pattern ?(m η1 . . . ηn π′
1 . . . π

′
p) with n ≥ 0 input argument

sub-expressions ηi and p ≥ 0 sub-patterns π′
j

the matcher m does a test using results ρi of ηi ;
if the test succeeds, data are extracted in the fill step and each should
match its π′

j
otherwise (the test fails, so) the match fails

an instance pattern ?(instance κ :φ1 π′
1 ... :φn π′

n)
matches iff µ is an object of class κ (or a sub-class) with each field φi
matching its sub-pattern π′

i

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 24 / 31

pattern matching in MELT matching and patterns

control patterns

We have controlling patterns
conjonctive pattern ?(and π1 . . . πn) matches µ iff π1 matches µ and
then π2 matches µ . . .
disjonctive pattern?(or π1 . . . πn) matches µ iff π1 matches µ or else
π2 matches µ . . .

Pattern variables are initially cleared, so (match 1 (?(or ?x ?y) y))
gives 0 (as a :long stuff)

(other control patterns would be nice, e.g. backtracking patterns)

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 25 / 31

pattern matching in MELT matchers

matchers

Two kinds of matchers:
1 c-matchers giving the test and the fill code thru expanded macro-strings

(defcmatcher gimple_cond_equal
(:gimple gc) ;; matched thing µ
(:tree lhs :tree rhs) ;; subpatterns putput
gce ;; state symbol
;; test expansion:
#{($GC &&

gimple_code ($GC) == GIMPLE_COND &&
gimple_cond_code ($GC) == EQ_EXPR)

}#
;; fill expansion:
#{ $LHS = gimple_cond_lhs ($GC);

$RHS = gimple_cond_rhs ($GC);
}#)

2 fun-matchers give test and fill steps thru a Melt function returning
secondary results

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 26 / 31

pattern matching in MELT translating pattern matching

translating pattern matching

mdata_3_SYMB

:value

MATCH_STEP_TEST_INSTANCE__1
CLASS_SYMBOL

MATCH_STEP_TEST_INSTANCE__2
CLASS_CONTAINER

mdata_5_CONTAINER_VALUE__1

:value

MATCH_STEP_FLAG_SET__3

flag#5 CVAL

MATCH_STEP_TEST_MATCHER__4
INTEGERBOX_OF

mdata_6_ICT__1

:long

mdata_7_NAMED_NAME__1

:value

MATCH_STEP_FLAG_SET__9

flag#2 SYNAM

MATCH_STEP_FLAG_CONJUNCTION__10

flag#1 CLASS_SYMBOL

flags{ 2 }

MATCH_STEP_SUCCESS_WHEN_FLAG__11

flag#1 CLASS_SYMBOL

Then

MATCH_STEP_FLAG_CONJUNCTION__6

flag#4 and

flags { 5, 6 }

MATCH_STEP_FLAG_CONJUNCTION__7

flag#3 CLASS_CONTAINER

flags{ 4 }

Then

MATCH_STEP_SUCCESS_WHEN_FLAG__8

flag#3 CLASS_CONTAINER

Then

Then

MATCH_STEP_FLAG_SET__5

flag#6 INTEGERBOX_OF

Then

Then

NAMED_NAME

Then

Else

CONTAINER_VALUE

Then

ICT Then

Naive approach might be not very
efficient: tests are done more than
needed.
translate

(match v
(?(instance class_symbol

:named_name ?synam)
(f synam))

(?(instance class_container
:container_value

?(and ?cval
?(integerbox_of ?_)))

(g cval)))

into a graph of matching steps, with
tests. Share steps when possible.

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 27 / 31

conclusion

Contents

1 introduction
disclaimer
about GCC
extending GCC thru plugins
extending GCC with DSLs

2 MELT language and implementation
motivations and major features
MELT values and GCC stuff
some constructs related to C code generation

3 pattern matching in MELT
pattern matching example
matching and patterns
matchers
translating pattern matching

4 conclusion

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 28 / 31

conclusion

Translating to C is a pragmatic approach

To add a DSL into a huge legacy program, embedding existing DSL may
be not practical.
Generating suitable C code suited to the target program is more flexible.
Defining proper language constructs for C code generation
Fitting into the legacy of the target program (adapting your runtime)
providing high level constructs

Melt approach might be re-used for other big mature software
(because embedding a DSL is a major architectural issue)

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 29 / 31

conclusion

MELT can be useful for your DSL

DSL implementations (in C or C++) require some coding styles and rules.

Melt extensions to Gcc can check these.

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 30 / 31

conclusion

Thanks

Thanks (alphabetically) to:
Romain Geissler
Marie Krumpe
Alexandre Lissy
Jérémie Salvucci
Pierre Vittet

for using and improving Melt
Thanks to Albert Cohen, Jan Midtgaard, Nic Volanschi and to the anonymous
reviewers for help for the paper.
Thanks to you for your attention.

Questions are welcome.

Basile STARYNKEVITCH MELT, a translated DSL embedded in GCC September 6th 2011 (Bordeaux) DSL2011 ? 31 / 31

	introduction
	disclaimer
	about GCC
	extending GCC thru plugins
	extending GCC with DSLs

	MELT language and implementation
	motivations and major features
	MELT values and GCC stuff
	some constructs related to C code generation

	pattern matching in MELT
	pattern matching example
	matching and patterns
	matchers
	translating pattern matching

	conclusion

