
documentation of the BISMON static source code analyzer.

This report and the Bismon static analyzer has been funded by European H2020 projects www.chariotproject.eu
(grant 780075) and www.decoder-project.eu (grant 824231).

The opinions are those of the author(s) only. The content of the publication herein is the sole responsibility
of the publishers and it does not necessarily represent the views expressed by the European Commission or
its services.

author:

Basile STARYNKEVITCH (CEA, LIST) DILS/LSL

from its SOFTWARE SECURITY LABORATORY

basile.starynkevitch@cea.fr

http://starynkevitch.net/Basile/

unverified, unapproved, unchecked draft Ful of Mistaks.

Some version of this DRAFT report might be downloadable from http://starynkevitch.net/Basile/bismon-

doc.pdf

This partly generated document and the Bismon software itself are co-developed in an agile and incremental
manner, and have exactly 3932 git commits on Mon 01 Feb 2021 03:26:24 PM MET. For more, please see
https://github.com/bstarynk/bismon/commits/ for details. These commits are too many and too fine
grained to be considered as “versions”. Given the agile and continuous workflow, it is unreasonable, and
practically impossible, to identify any formalized versions.

This document is co-developed with the Bismon software itself, it was typeset using LATEX on Linux and contains
some generated documentation 1, mixed with hand-written text. During development of bismon, the amount of gen-
erated documentation will grow. The entire history of Bismon (both the software -including its persistent store- and
this document) is available on https://github.com/bstarynk/bismon/commits and has, for this document of commit
id 61e424abbb482e7e++ (done on 2021-Feb-01) generated on Feb 01, 2021, exactly 3932 commits (or elementary
changes). Since changes on any file in the git repository can affect this document, no “version” is identifiable.

For convenience to the reader, here are the last 2 three git commit-s:

commit 61e424abbb482e7eb81dcd2da7d12bb1e667f2b8
Author: Basile Starynkevitch <basile@starynkevitch.net>
Date: Mon Feb 1 14:08:34 2021 +0100

mention both chariot and decoder

M doc/bismon-doc.tex

commit 9e198ce90e47a60a45c6cdc025c166fb159d3bf4
Author: Basile Starynkevitch <basile@starynkevitch.net>
Date: Mon Feb 1 11:05:16 2021 +0100

the output of ./bismon -help goes into the documentation

M build-bismon-doc.sh
M doc/appendix-bm.tex
M doc/bismon-doc.tex
A doc/genscripts/005-bismon-help.sh

commit 3eee9ed1ff85ef0f28ef74049c31014618bd72e7
Author: Basile Starynkevitch <basile@starynkevitch.net>
Date: Mon Feb 1 10:24:32 2021 +0100

show gitid in -help message

M main_BM.c

1The generated parts are clearly identified as such, and are extracted from the Bismon system.
2Obtained by the git log -name-status -3 command running in bismon top source directory.

http://www.chariotproject.eu
http://www.decoder-project.eu
mailto:basile.starynkevitch@cea.fr
http://starynkevitch.net/Basile/
http://starynkevitch.net/Basile/bismon-doc.pdf
http://starynkevitch.net/Basile/bismon-doc.pdf
http://git-scm.com/
https://github.com/bstarynk/bismon/commits/
https://github.com/bstarynk/bismon/commits


the BISMON static source code analyzer

There is no notion of any identifiable “version” in bismon, so also in this report. The work is incremental
and the development is agile.

copyright message'

&

$

%

Copyright © 2018 - 2021 CEA (Commissariat à l’énergie atomique et aux énergies alternatives).

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowl-
edgement of previously published material and of the work of others has been made through appropriate
citation, quotation or both. Reproduction is authorised provided the source is acknowledged (see last page
for licensing details).

notice

This work is funded (from start of 2018 to end of 2020) thru the CHARIOT project (see its web site on
http://chariotproject.eu/) which has received funding from the European Unions Horizon 2020 re-
search and innovation programme under the Grant Agreement No 780075. This work is also partly funded
-from 2019 to 2021- by the DECODER H2020 project, under its Grant Agreement 824231.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 2 of 77

http://chariotproject.eu/
http://decoder-project.eu/


the BISMON static source code analyzer

Contents

1 Introduction 5
1.1 Mapping CHARIOT output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Deliverable Overview and Report Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Expected audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 The CHARIOT vision on specialized static source code analysis for more secure and safer IoT

software development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 About static source code analysis and IoT . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 The power of an existing compiler: GCC . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Leveraging simple static source analysis on GCC . . . . . . . . . . . . . . . . . . . . 17

1.5 Lessons learned from GCC MELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Driving principles for the Bismon persistent monitor . . . . . . . . . . . . . . . . . . . . . . . 20

1.6.1 About Bismon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6.2 About Bismon as a domain-specific language . . . . . . . . . . . . . . . . . . . . . . 22
1.6.3 About Bismon as a evolving software system . . . . . . . . . . . . . . . . . . . . . . 24
1.6.4 About Bismon as a static source code analyzer framework . . . . . . . . . . . . . . . 26

1.7 Multi-threaded and distributed aspects of Bismon . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Data and its persistence in Bismon 29
2.1 Data processed in Bismon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Immutable values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Mutable objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 garbage collection of values and objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 persistence in Bismon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 file organization of the persistent state . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 persisting objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Static analysis of source code in Bismon 37
3.1 static analysis of GCC code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 static analysis of IoT firmware or application code . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 static analysis related to pointers and addresses . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Using Bismon 41
4.1 How JSON is used by Bismon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 The canonical JSON encoding of Bismon values . . . . . . . . . . . . . . . . . . . . 41
4.1.2 The nodal JSON decoding into Bismon values . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 JSON extraction with extract_json . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Web interface internal design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Using bismon for CHARIOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Miscellanous work 49
5.1 Contributions to other free software projects . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Aborted contribution to libonion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1.2 Contribution to GCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Design and implementation of the compiler and linker extension . . . . . . . . . . . . . . . . 49

6 Conclusion 50

A Building bismon from its source code 51
A.1 Prerequisites for building bismon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2 File naming conventions in bismon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.3 Naming conventions and source files organization for bismon . . . . . . . . . . . . . . . . . 52
A.4 Generators and meta-programs in bismon . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 1 of 77



the BISMON static source code analyzer

B Configuring bismon from its source code 54

C Building bismon from its source code 54
C.1 Checking the version of bismon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

D Dumping and restoring the bismon persistent heap 57

Index 58

References 65

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 2 of 77



the BISMON static source code analyzer

List of Figures

1 the CHARIOT compilation of some IoT firmware or application (simplified) . . . . . . . . . . 11
2 The Bismon monitor used by some IoT developer team following the CHARIOT approach. . . 19
3 crude (soon deprecated) GTK interface oct. 22, 2018, git commit cbdcf1ec351c3f2a . . . . . . . . . 25
4 generated dump example: first_test_module in file store2.bmon . . . . . . . . . . 35
5 syntax of values in dumped data files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

List of Tables

1 adherence to CHARIOT’s GA deliverable and tasks descriptions . . . . . . . . . . . . . . . . 5
2 recursive inlining with constant folding in GCC (C source) . . . . . . . . . . . . . . . . . . . 12
3 recursive inlining with constant folding in GCC (generated early Gimple) . . . . . . . . . . . 12
4 recursive inlining with constant folding in GCC (generated SSA form) . . . . . . . . . . . . . 13
5 recursive inlining with constant folding in GCC (generated optimized) . . . . . . . . . . . . . 14
6 recursive inlining with constant folding in GCC (generated MIPS assembler) . . . . . . . . . 14
7 optimization around heap allocation by GCC (C source) . . . . . . . . . . . . . . . . . . . . . 15
8 optimization around heap allocation by GCC (generated Gimple) . . . . . . . . . . . . . . . . 16
9 optimization around heap allocation by GCC (generated SSA/optimized) . . . . . . . . . . . . 16
10 optimization around heap allocation by GCC (generated x86-64 assembly) . . . . . . . . . . . 17
11 canonical JSON encoding JvKjson of a Bismon value v. . . . . . . . . . . . . . . . . . . . . . 41
12 nodal JSON decoding xjsynod of a JSON value js . . . . . . . . . . . . . . . . . . . . . . . . . 42
13 simple extraction from some JSON thing js; (see also table 14 below.) . . . . . . . . . . . . . . . 43
14 complex extraction from some JSON thing js; (see also table 13 above.) . . . . . . . . . . . . . . 44

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 3 of 77



the BISMON static source code analyzer

Glossary of terms and abbreviations used

Abbreviation /
Term

Description

binutils GNU free software package containing assembler as, linker ld and
other utilities to operate on object files or binary executables, etc...
https://www.gnu.org/software/binutils/

bismon the free software framework and persistent monitor described here ; source
repository on http://github.com/bstarynk/bismon/

CLANG The Clang open-source project provides a language front-end and tool-
ing infrastructure for languages in the C language family (C, C++, Ob-
jective C/C++, OpenCL, CUDA, and RenderScript) for the LLVM project
http://clang.llvm.org/

FRAMA-C a free sofware extensible platform for analysis of C software http://frama-

c.com/

FSF Free Software Foundation http://fsf.org/

GCC Gnu Compiler Collection http://gcc.gnu.org/

GCC MELT was a (GPLv3+-licensed) GCC plugin and framework pro-
viding a DSL to ease GCC extensions ; it is archived on
http://starynkevitch.net/Basile/gcc-melt/

Generic language-independent abstract syntax tree (internal representation) in GCC
Gimple middle-end internal representation in GCC

GPL Gnu General Public Licence (a copylefted free software license)
https://www.gnu.org/licenses/gpl.html

IoT Internet of Things
libonion an HTTP server library https://www.coralbits.com/libonion/

LLVM The LLVM Project is an open-source collection of modular and reusable com-
piler and toolchain technologies http://www.llvm.org/

MELT the Lisp-like domain specific language used in GCC MELT
Persistence From Wikipedia : “In computer science, persistence refers to the char-

acteristic of state that outlives the process that created it. This is
achieved in practice by storing the state as data in computer data storage”.
https://en.wikipedia.org/wiki/Persistence_(computer_science)

RTL (register transfer language) back-end internal representation in GCC
static code analysis (or static program analysis) “is the analysis of computer soft-

ware that is performed without actually executing programs, in
contrast with dynamic analysis, which is analysis performed
on programs while they are executing.” (from Wikipedia:
https://en.wikipedia.org/wiki/Static_program_analysis). In
this D1.3v1 report, it means static source code analysis, in practice analysis of
C or C++ code for IoT fed to the GCC compiler.

SSA Static Single Assignment (in GCC, a variant of Gimple)

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 4 of 77

https://www.gnu.org/software/binutils/
http://github.com/bstarynk/bismon/
http://clang.llvm.org/
http://frama-c.com/
http://frama-c.com/
http://fsf.org/
http://gcc.gnu.org/
http://starynkevitch.net/Basile/gcc-melt/
https://www.gnu.org/licenses/gpl.html
https://www.coralbits.com/libonion/
http://www.llvm.org/
https://en.wikipedia.org/wiki/Persistence_(computer_science)
https://en.wikipedia.org/wiki/Static_program_analysis


the BISMON static source code analyzer

1 Introduction

This D1.3 v1 CHARIOT deliverable is a first draft -and preliminary- version of D1.3 v2 that will be formally
submitted as the complete and final deliverable at M30 on “Specialized Static Analysis tools for more secure and
safer IoT software development”. This deliverable targets software engineering (and indirectly also software
architects) experts working on IoT software coded in C or C++.

1.1 Mapping CHARIOT output

We refer to CHARIOT Grant Agreement (GA). See table 1 below.

Table 1: adherence to CHARIOT’s GA deliverable and tasks descriptions

CHARIOT GA compo-
nent title

CHARIOT GA component outline respective
document
chapter[s]

justification

deliverable

D1.3
Specialized Static Anal-
ysis tools for more se-
cure and safer IoT soft-
ware development.

The source code (top level documentation) of the
prototype static analysis tools developed in task
T1.3, including the definition of data formats and
protocols, updates and adapation of existing li-
braries and software components, the persistent
monitor outline and documentation, anf features
description and documentation of the compiler
and linker extensions. An initial version set (V1)
will be compiled by M12 followed by a revised
version set (v2) in M30.

this whole
document

a single deliverable (with two
versions of it, a preliminary
draft one D1.3v1 and a fi-
nal one D1.3v2) describes the
work. §1 is an overview and
introduces the main concepts.
§2 explains persistence. §3
relates to static analysis. §4
will become a user manual.
§5 relates miscellanous work.
The conclusion is in §6.

tasks
T1.3 Specialized Static
Analysis tools for more
secure and safer IoT soft-
ware development.

ST1.3.1 definition of data formats and protocols §2; §5.2 The persistent monitor data
and format are described in
§2. The protocol to interact
with CHARIOT’s blockchain
is related to §5.2 and chapter
6 of D1.2

ST1.3.2 significant patches to existing free soft-
ware components

§5.1 Section §5.1 describe past
work, and why future con-
tributions to GCC could be
needed.

ST1.3.3 design and implementation of the per-
sistent monitor

§1.4; §1.6;
§1.7; §2;

§1.4 gives the CHARIOT vi-
sion of (informal) static anal-
ysis; §1.6 explains the driving
principles of our Bismon per-
sistent monitor, and (in §1.7)
its multi-threaded and dis-
tributed aspects; §2 explains
its persistent data.

ST1.3.4 design and implementation of the com-
piler and linker extension

§3; §5.2 static analysis involves gen-
erated GCC plugins, as (in
this D1.3v1 preliminary draft)
partly explained in §3; com-
piler and linker extensions are
(in D1.3v1) drafted in §5.2

1.2 Deliverable Overview and Report Structure

This CHARIOT deliverable D1.3v1 is the preliminary draft of a report D1.2v2 scheduled at M30 on Specialized
Static Analysis tools for more secure and safer IoT software development and relates to the work performed in

3Our favorite definition of source code is inspired by the FSF: the source code is the preferred form on which software developers
should work. In practice, source code is what usually (but not always) should be managed by some version control system like a git
code repository, or in some software forge.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 5 of 77

https://www.fsf.org/
http://git-scm.com/
https://en.wikipedia.org/wiki/Comparison_of_source-code-hosting_facilities
https://en.wikipedia.org/wiki/Forge_(software)


the BISMON static source code analyzer

T1.3 Specialized Static Analysis tools for more secure and safer IoT software development.
The introduction (this §1) describes the CHARIOT vision on static source code3 (mostly of C and C++ code

for IoT firmware and application) analysis (see §1.4), proposing a simple static analysis framework leveraging
on the powerful recent GCC [cross-]compiler and explaining the necessity of persistence, then gives the driving
principles of our Bismon persistent monitor (in §1.6); and explains its multi-threaded and distributed aspects (in
§1.7). The data and its persistence is detailed (in §2, notably §2.1 for the processed data, §2.2 for the garbage
collection, §2.3 for persistence). The §3 needs still to be mostly written and will describe (in the D1.3v2) how
static analysis works. The §4 will contain the (mostly generated) user documentation. The §5 describes some
miscellanous work.

Related previous CHARIOT deliverables include: D1.1 (on Classification and use guidelines of relevant
standards and platforms), which provides a taxonomy of standards and guidelines (notably on cybersecurity, at
a high and abstract level); but does mention much source code (except as open source projects such as IoTivity,
FiWire, OM2M, etc). and D1.2 (on Method for coupling preprogrammed private keys on IoT devices with a
Blockchain system) which describes the CHARIOT blockchain and its Web API (which should be adapted into
functions or libraries callable from C code).

1.3 Expected audience

The numerous footnotes in this report are for a second reading (and may be used for forward references). To
understand this report describing a circular and reflexive system, you should read it twice (skipping footnotes
at the first read).

The reader of this document (within CHARIOT, a software engineering expert working on IoT software or
firmware coded in C or C++) is expected to:

• be fluent in C (cf. Kernighan and Ritchie [1988]; Gustedt [2019]) and/or C++ (Stroustrup [2014, 2020])
programming (notably on Linux -see Mitchell et al. [2001]; Kerrisk [2010] and the man7.org and
kernelnewbies.org and kernel.org websites- and/or for embedded products, perhaps for IoT),

• be knowing a bit the C11 standard (cf. ISO [2011a]; Memarian et al. [2016]) and/or the C++11 one (ISO
[2011b]) and understanding well the essential notion of undefined behavior 4 in C or C++ programs,

• be a daily advanced user of Linux for software development activities using GCC and related developer
tools (e.g. binutils, version control like git, build automation like make or ninja, source code editor
like emacs or vim, the LATEX text formatter 5) on the command line.

• be easily able, in principle, to compile 6 his/her or other software coded in C (or in C++) on the com-
mand line (without any IDE - integrated software environment- or SDK - software development kit-)
with a sequence of gcc (or g++) commands 7 on Linux.

• to be capable of building large free software or open source projects (such as the GCC compiler (cf GCC
Community [2018] 8), the Linux kernel, the QT or FLTK graphical toolkits and other open source projects
of perhaps millions of source code lines) and smaller ones (e.g. libonion 9) from their source form.

• have successfully downloaded and built the Bismon monitor from its source code available on
https://github.com/bstarynk/bismon, on his/her Linux workstation.

4See http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html and
https://blog.regehr.org/archives/1520

5See https://www.latex-project.org/. Some knowledge of LATEX is useful to improve or contribute to this document.
6When compiling IoT software such as firmware, it usually is of course some cross-compilation.
7In practice, we all use some build automation tool, such as make, ninja or generators for them such as cmake, autoconf,

meson, etc... But the reader is expected to be able to configure that, e.g. to add more options to gcc or to g++ (perhaps in his/her
Makefile) and is able to think in terms of a sequence of elementary gcc or g++ compilation commands (or, when using Clang,
clang or clang++ commands).

8See http://gcc.gnu.org and notice that many cross-compiler forms of GCC may need to be compiled from the source code of
that compiler distributed by the FSF, in particular because GCC plugin ability is needed within CHARIOT, or because hardware vendors
provide only old versions of that compiler.

9see https://coralbits.com/libonion/

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 6 of 77

https://man7.org/
https://kernelnewbies.org/
https://www.kernel.org/
https://qt.io/
https://www.fltk.org/
https://github.com/bstarynk/bismon
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://blog.regehr.org/archives/1520
https://www.latex-project.org/
http://gcc.gnu.org
https://coralbits.com/libonion/


the BISMON static source code analyzer

• have contributed or participated to some free software or open source projects and understanding their
social (cf Raymond [2001]) and economical (cf Weber [2004]; Tirole [2018]; Nagle [2018]; Di Cosmo
and Nora [1998]; Lerner and Tirole [2000]) implications, the practical work flow, the importance of
developer communities and of business 10 support.

• be interested in static source code analysis, so have already tried some such tools like Frama-C 11 (cf.
Cuoq et al. [2012]), Clang analyzer 12, ..., and be aware of compiler concepts and technologies (read Aho
et al. [2006]).

• be interested by knowledge base tools and symbolic artificial intelligence approaches (cf Nouira and
Fouet [1996]; Pitrat [1990, 1996]; Polito et al. [2014]; Raj [2018]; Rodriguez et al. [2018]; Doyle [1985];
Starynkevitch [1990]; Khalilian et al. [2021] and REFPERSYS) to software engineeering problems (see
Rich and Waters [2014]; Beckert et al. [2007]; Happel and Seedorf [2006]; Rus et al. [2002]; Baudin
et al. [2002]; Guilbaud et al. [2001]; Starynkevitch [2007, 2009]; Fitz et al. [2019]; Gabbay and Smets
[2013]).

• be familiar with operating systems principles (see Tanenbaum [1992]; Arpaci-Dusseau and Arpaci-
Dusseau [2015]) and well versed in Linux programming (cf. Mitchell et al. [2001]; Kerrisk [2010]
13).

• be interested in various programming languages (cf. Abelson et al. [1996]; Scott [2007]; Queinnec
[1996]) and their implementation14 including domain specific ones.

• is aware that most software projects fail 15 (for some definition of failure; see also Brooks [1995]; Khan
et al. [2019]; Attarzadeh and Siew Hock [2008], etc...), and that obviously includes research software
projects, which fail even more often, and any IoT software in general. I believe that such a high failure
rate is intrinsic 16 to any non-trivial software developed by humans (because of Braun et al. [1956], of
“leaky abstractions” 17 and of the Halting problem, etc...), and that formal methods approaches are still
vulnerable to specification 18 bugs. Agile and lean approaches could be effective for improving IoT
software development processes (see Rodriguez et al. [2018]). Code review by senior programmers is
needed.

• is understanding the notion of Technical Readiness Level (TRL) and its implication in innovative projects,
notably H2020 ones (see Héder [2017]).

• is familiar with the idea of generating documentation from software source code, either thru literate
programming techniques, such as the nuweb system combined with LATEX, or with dedicated docu-
mentation generating tools such as doxygen documentation generator or ocamldoc documentation
generator. Documentation framework tools like pandoc document converter, small batch document
formatters like LOUT software or schemas such as DOCBOOK document schama are also relevant.

10See also Daniel Oberhous’ blog February 2019 post on https://motherboard.vice.com/en_us/article/43zak3/
the-internet-was-built-on-the-free-labor-of-open-source-developers-is-that-sustainable:
The Internet Was Built on the Free Labor of Open Source Developers. Is That Sustainable?

11See http://frama-c.com/
12See https://clang-analyzer.llvm.org/
13look into man pages on http://man7.org/linux/man-pages/
14See also https://www.tweag.io/blog, since several posts there are relevant to ideas inspiring Bismon.
15See https://www.geneca.com/why-up-to-75-of-software-projects-will-fail/
16IMHO, allocation of much more time and efforts, including code reviews, on software development is necessary - but sadly it is

not sufficient - to lower that failure rate. Read about the Joel Test on https://www.joelonsoftware.com/2000/08/09/the-joel-

test-12-steps-to-better-code/ for more.
17Cf. Spolsky’s Law of leaky abstractions on

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/ etc... for more.
18A speculative example of a tragic specification bug might include something inside the Boeing 737 MAX - see

https://en.wikipedia.org/wiki/Boeing_737_MAX - which could have recent crashes related to bugs in specifications, and proba-
bly developed with the most serious formal methods approaches, dictated by DO-178-C -see https://en.wikipedia.org/wiki/DO-

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 7 of 77

https://www.gnu.org/philosophy/free-sw.en.html
https://opensource.org/
http://refpersys.org
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Technology_readiness_level
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming
http://nuweb.sourceforge.net/
https://www.latex-project.org/
https://www.doxygen.nl/
https://caml.inria.fr/pub/docs/manual-ocaml/ocamldoc.html
https://caml.inria.fr/pub/docs/manual-ocaml/ocamldoc.html
https://pandoc.org/
https://en.wikipedia.org/wiki/Lout_(software)
https://docbook.org/
https://motherboard.vice.com/en_us/article/43zak3/the-internet-was-built-on-the-free-labor-of-open-source-developers-is-that-sustainable
https://motherboard.vice.com/en_us/article/43zak3/the-internet-was-built-on-the-free-labor-of-open-source-developers-is-that-sustainable
http://frama-c.com/
https://clang-analyzer.llvm.org/
http://man7.org/linux/man-pages/
https://www.tweag.io/blog
https://www.geneca.com/why-up-to-75-of-software-projects-will-fail/
https://en.wiktionary.org/wiki/IMHO
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://en.wikipedia.org/wiki/Boeing_737_MAX
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C


the BISMON static source code analyzer

1.4 The CHARIOT vision on specialized static source code analysis for more secure and safer
IoT software development

1.4.1 About static source code analysis and IoT

There are many existing documents related to improving safety and security in IoT software (e.g. Chen and
Helal [2011]; Medwed [2016]; Kumar and Goyal [2019]; Chakkaravarthy et al. [2019]), and even more on
static source code analysis in general (cf. Gomes et al. [2009]; Goseva-Popstojanova and Perhinschi [2015];
Binkley [2007] and many others).

Several conferences are dedicated to static analysis19. All dominant C compilers (notably GCC and Clang,
but also MicroSoft’s Visual C™) are using complex static source code analysis techniques for optimizations and
warnings purposes (and that is why C compilers are monsters 20). It is wisely noticed (in Goseva-Popstojanova
and Perhinschi [2015]) that state-of-the-art static source code analysis tools are not very effective in detect-
ing security vulnerabilities 21, so they are not a “silver bullet” (Brooks [1987]). Many taxonomies of software
defects already exist (e.g. Silva and Vieira [2016]; Wagner [2008]; Levine [2009] etc....), notably for IoT (see
Carpent et al. [2018]; Ahmad et al. [2018]; László et al. [2017]); however the relation between an explicit defect
and a source code property is generally fuzzy, or ill-defined.

Observe that, while Debian and several other Linux distributions are packaging many thousands of C or
C++ programs and libraries and several free software source code analyzers (notably FRAMA-C and CLANG

tools and COCCINNELLE), very few Debian packages -coded in C or C++ for example- are conditionnally
“build-depending”22 on them. This could be explained by the practical difficulties, for Debian developers or
packagers, to effectively use these source code analyzers. Large C or C++ Linux-related software - such as the
Linux kernel, standard or widely used C or C++ libraries (including libcurl, QT, GTK, LIBZ, OPENSSL,
etc...), Firefox, Libreoffice, various interpreters (Python, Guile), runtime (Ocaml’s or SBCL’s ones) or compil-
ers (GCC, Clang) etc... are still not really analyzable automatically today, in a cost-effective and time-efficient
manner. But Debian cares a lot about software quality and stability, so when automatic tools are available and
practically useful, they are used! The same observation holds even for specialized Linux distributions23 used
in many non-critical embedded and connected IoT systems.

Language specifications and their implementations allow weird behavior; for example, simply testing in
C++ or C code an unitialized ‘bool‘ variable may crash the entire program (as explained here), even if imple-
mentations doing so are not common (but definitely could happen in the IoT world with DSP embedded pro-
cessors with VLIW architecture), related to so called trap representations permitted by language standards (see
ISO [2011b,a]). Also, some implementations of C have sizeof(char), sizeof(int), sizeof(long),
sizeof(void*) and alignof(char), alignof(long) being one (e.g. on word-addressable but not
byte-addressable Harvard architectures). . The common Intel x86 IA-32 bits processor architecture (still used
in VORTEX86 chips) allow -with some runtime performance penalty- access to misaligned 64 bits floating point
numbers, but the same C code would crash on e.g. ARM systems, such as RASPBERRYPI boards. Of course
endianness matters a lot in any IoT devices and is very important in binary communication protocols (e.g. SATA

, ETHERNET or IEEE 802.11 WIFI, LI-FI (see Khandal and Jain [2014]) or USB or in the automotive industry
the CAN bus. It also matters in network protocol stacks, including IP (see Cerf and Icahn [2005]) or ASN-1
(see Barry [1992]), used in cryptographic certificates (such as X.509 for HTTPS secure web servers. The recent
HTTP/2 web protocol is a binary one and requires to care about endianness also. X Window System protocols,
WAYLAND display protocols SSH, RFB protocol are also binary, with endianness issues, and extremely popular
in non-critical IoT systems based on Linux. For multimedia connected consumer devices, HDMI on the hard-
ware side, and MPEG-4 for audio/video encoding are also binary protocols or encodings. The OGG container
format is free of patent and should be prefered for audio encoding. The many JPEG digital image formats, very

178C etc... But in mid-2019 this is only a speculation (details are unknown to me). See also the controversial but interesting analysis of
Graeber and Cerutti [2018] explaining the plausibility of such speculations.

19The 25th Static Analysis Symposium happened in august 2018, see http://staticanalysis.org/sas2018/sas2018.html; most
ACM SIGPLAN conferences such as POPL, PLDI, ICFP, OOPSLA, LCTES, SPLASH, DSL, CGO, SLE... have papers related to static
source code analysis.

20see https://softwareengineering.stackexchange.com/a/273711/40065 for more.
21Se we can only hope an incremental progress in that area. Static source code analysis in CHARIOT won’t make miracles.
22The Debian packaging system is sophisticated enough to just suggest a tool useful to build a package from its source code.
23The Raspbian distribution is a typical example, see https://raspbian.org/ for more. But look also into

https://www.automotivelinux.org/ or https://www.genivi.org/ as another examples.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 8 of 77

https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://stackoverflow.com/a/54125820/841108
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/Vortex86
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/ARM_architecture
https://raspberrypi.org/
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Serial_ATA
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/IEEE_802.11
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/ASN.1
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/HTTP/2
https://en.wikipedia.org/wiki/X_Window_System_protocols_and_architecture
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/RFB_protocol
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/HDMI
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/MPEG-4
https://en.wikipedia.org/wiki/Ogg
https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/Ogg
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/DO-178C
http://staticanalysis.org/sas2018/sas2018.html
https://softwareengineering.stackexchange.com/a/273711/40065
https://raspbian.org/
https://www.automotivelinux.org/
https://www.genivi.org/


the BISMON static source code analyzer

common in digital consumer photography, needs also endian-sensitive binary processing, and is increasingly
used in most IoT connected cameras (presumably Linux based), some of which are still designed in Europe.

Static source code analysis tools can -generally speaking- be 24 viewed as being of one of two kinds:

• strongly formal methods based, semantically oriented, “sound” tools (e.g. built above abstract interpre-
tation -cf. Cousot and Cousot [2014, 1977]-, model checking -cf. Schlich [2010]; Siddiqui et al. [2018]
and Jhala and Majumdar [2009]-, and other formal techniques on the whole program... See also An-
dreasen et al. [2017]) which can give excellent results but require a lot of expertise to be used, and may
take a long time to run 25. For examples, Frama-C (cf Cuoq et al. [2012]), Astrée (cf Miné and Delmas
[2015]), Mopsa (cf Miné et al. [2018]) etc... The expert user needs either to explicitly annotate the an-
alyzed source code (e.g. in ACSL for Frama-C, see Baudin et al. [2018]; Delahaye et al. [2013]; Amin
and Rompf [2017]), and/or cleverly tune the many configuration knobs of the static analyzer, and often
both. Often, the static analyzer itself has to be extended to be able to give interesting results on one par-
ticular analyzed source code 26, when that analyzed code is complex or quite large. Many formal static
analyzers (e.g. Greenaway et al. [2014]; Vedala and Kumar [2012]) focus on checking just one aspect or
property of security or safety. Usually, formal and sound static analyzers can practically cope only with
small sized analyzed programs of at most one or a few hundred thousands lines of C code (following
some particular coding style or using some definable subset of the C language27). Some formal analysis
approaches include a definition of a strict subset of C, thru perhaps some automatically generated code
(cf. Bhargavan et al. [2017]) from some DSL. In practice, the formal sound static analyzers are able to
prove automatically some simple properties of small, highly critical, software components (e.g. avoiding
the need of unit testing at the expense of very costly software development efforts).

• lightweight “syntax” oriented “unsound” tools, such as Coverity Scan 28 or Clang-Analyzer, or even
recent compilers (GCC or Clang) with all warnings and link-time optimization 29 enabled. Of course,
these simpler approaches give many false positive warnings (cf Nadeem et al. [2012]), but machine
learning techniques (cf Perl et al. [2015]; Flach [2012]; Shalev-Shwartz and Ben-David [2014]) using
bug databases could help.

A generalization of strictly static source code analysis enables a mixed, semi-static and semi-dynamic
approach, but leverages on extending some existing compilers (such as gcc or clang...), linkers (e.g. ld
started by g++), or even run-time loaders (e.g. ld-linux.so or crt0): inserting some runtime checking
code into the compiled executable, during compilation time or at link time30. This is the design idea of widely
used tools such as the valgrind memory checker31 or the address sanitizer (see Serebryany et al. [2012])
originally in Clang, and now also in GCC. Today, both gcc and clang have several compiler sanitizers
with such an approach. Some of them are very intrusive because they slow down the debugged program run
time by an important factor of at least 10x, others are almost imperceptible, since they may increase memory
consumption by perhaps 25% at runtime, but CPU time by just a few percents. Some specialized semi-static
source code analyzers also adopt a similiar instrumenting approach (for example, Biswas et al. [2017]). Most

24This is a gross simplification! In practice, there is a continuous spectrum of source code analyzers, much like there is a spectrum
between compilers and interpreters (with e.g. bytecode or JIT implementations sitting in between compilation and naive interpretation).

25There are cases where those static analyzers need weeks of computer time to give interesting results.
26The Astrée project can be seen as the development of a powerful analyzer tool specifically suited for the needs of Airbus control

command software; it implements many complex abstract interpretation lattices wisely chosen to fit the relevant traits of the analyzed
code. Neither Astrée nor Frama-C can easily -without any additional tuning or annotations- and successfully be used on most Linux
command line utilities (e.g. bash, coreutils, binutils, gcc, ...) or servers (e.g. systemd, lighttpd, Wayland or Xorg,
or IoT frameworks such as MQTT...). But Frama-C can be extended by additional plugins so is a framework for sound static analysis.

27For instance, both Frama-C and Astrée have issues in dealing with standard dynamic C memory allocation above malloc; since
they target above all the safety critical real-time embedded software market where such allocations are forbidden.

28See https://scan.coverity.com/
29Link-time optimization (e.g. compiling and linking with gcc -O2 -flto -Wall -Wextra using GCC) slows down the

build time by more than a factor of two since the intermediate internal representation (IR) of the compiler (e.g. Gimple for GCC, see
GCC Community [2018] §12) is kept in object files and reload at “link-time” which is done by the compiler working on the whole
program’s IR, so is rarely used.

30That could even be at dynamic-link time, e.g. in ld-linux.so just before running main in some C or C++ program.
31See http://valgrind.org/, and be aware that valgrind is capable of runtime checking many other properties, such as some

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 9 of 77

https://scan.coverity.com/
http://valgrind.org/


the BISMON static source code analyzer

sanitizers32 are whole-program33 tools and need some operating system kernel at runtime, but they provide yet
another effective tool to embedded software developers.

Most (fully) static34 source code analyzers require some kind of interaction with their user (cf Lipford et al.
[2014]), in particular to present partial analysis results and explanations about them, or complex information
like control flow graphs, derived properties at each statements.

The VESSEDIA project is an H2020 IoT-related project 35 which is focusing on a strong formal methods
approach for IoT software and insists on a “single system formal verification” approach (so it makes quite
weak hypothesis on the “systems of systems” view); it “aims at enhancing safety and security of information
and communication technology (ICT) and especially the Internet of Things (IoT). More precisely the aim of
[the VESSEDIA] project consists in making formal methods more accessible for application domains that want
to improve the security and reliability of their software applications by means of Formal Methods” 36. Most
VESSEDIA partners (even the industrial ones, cf. Berkes et al. [2018]) are versed in formal static analysis
techniques (many of them being already trained to use Frama-C several years before, and several of them
contributing actively to that tool.). Some of the major achievements of VESSEDIA includes formal (but fully
automatic) proofs of often simple (and sometimes very complex and very specific) properties of some basic
software components (e.g. lack of undefined behavior in the memory allocator, or the linked list implementa-
tion, of Contiki). Some automatically proven properties can be very complex, and the very hard work 37 is in
formalizing these properties (in terms of C code!) and then in assisting the formal tool to prove them.

In contrast, CHARIOT focuses mainly on a systems of systems (e.g. networks of systems and systems of
networks) approach, so 38 “aims to address how safety-critical-systems should be securely and appropriately
managed and integrated with a fog network made up of heterogeneous IoT devices and gateways.”. Within
CHARIOT, static analysis methods have to be “simple” and support its Open IoT Cloud Platform thru its IoT
Privacy, Security and Safety Supervision Engine 39, and some industrial CHARIOT partners, while being IoT
network and hardware experts, are noticing that their favorite IDE (provided by their main IoT hardware vendor)
is running some GCC under the hoods during the build of their firmware, but are not used to static source code
analysis tools. The CHARIOT approach to static source code analysis does not require the same level of expertise
as needed for the Verified in Europe label pushed by the VESSEDIA project.

Non-critical 40, but communicating, industrial IoT is programmed in various languages41: when a non-
critical equipement should be autonomous so needs to consume very little energy, programming it in C, C++ or
Rust is preferable (think of smart watches and similar wearables increasing worker productivity). When such
a non-critical computing device is part of some larger equipement requiring constant and significant electric
power (automatic expressway tollgate, some smart sensors in an oil refinery, high-end digital oscilloscopes,
office air-conditioning facilities, etc...) it could make sense to code it in a higher-level language, such as C++,
Java, Python, Lua, JavaScript . . . making the embedded software developer more productive when producing

race conditions or other undefined behavior.
32Since our Bismon framework is becoming capable of customizing GCC by generating ad-hoc plugins, it could be later used in such

a way too, to easily develop ad-hoc and project-specific compiler sanitizers.
33That “whole-program” holistic aspect is shared by most static source code analyzers, such as Clang-analyzer or Frama-C and is

of course the major selling point of our Bismon framework.
34Some compiler sanitizers, i.e. semi-static analyzers, may also require user interaction, but that is generally done thru ad-hoc source

code annotations such as #pragma-s.
35The VESSEDIA project (Verification Engineering of Safety and Security Critical Industrial Applications) has received funding from

the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 731453, within the call H2020-
DS-LEIT-2016, started in january 2017, ending in december 2019.

36Taken from https://vessedia.eu/about
37In terms of human efforts, the formalization of the problem, and the annotation of the code and guidance of the prover, takes much

more time and money (often more than a factor of 30x) than the coding of the C code. Within CHARIOT no large effort is explicitly
allocated for such concrete but difficult tasks.

38Taken in october 2018 from https://www.chariotproject.eu/About, §Technical Approach.
39Taken from https://www.chariotproject.eu/About/
40In this report, a critical industrial software is a piece of embedded code whose direct failure impacts human life (e.g. train braking

system, but not its preventive maintenance), or costly industrial installations (e.g. entire oil platforms, large power plants) involving
large equipement costing many dozens of M; anything else is non-critical : air conditioning of a office building, measurement of
brake wear on a train for preventive maintenance optimization, door opening automation in an airport which can be quickly disabled in
emergency cases, etc...

41See https://www.iotforall.com/2018-top-3-programming-languages-iot-development/ for more.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 10 of 77

http://vessedia.eu/
https://vessedia.eu/about
https://www.chariotproject.eu/About
https://www.chariotproject.eu/About/
https://www.iotforall.com/2018-top-3-programming-languages-iot-development/


the BISMON static source code analyzer

code for industrial systems built in small series.

The CHARIOT approach to static source analysis leverages on an existing recent GCC cross-compiler 42

so focuses on GCC-compiled languages43. Hence, the IoT software developer following the CHARIOT method-
ology would just add some additional flags to existing gcc or g++ cross-compilation commands, and needs
simply to change slightly his/her build automation scripts (e.g. add a few lines to his Makefile). Such a gen-
tle approach (see figure 1) has the advantage of not disturbing much the usual developer workflow and habit,
and addresses also the junior IoT software developer. Of course the details of compilation commands would
change, the commands shown in the figure 1 are grossly simplified! The compilation and linking processes
are communicating -via some additional GCC plugins (cf. GCC Community [2018] §24) doing inter-process
communication- with our persistent monitor, tentatively called bismon . It is preferable (see Free Software
Foundation [2009]) to use free software GCC plugins (or free software generators for them) when compiling
proprietary firmware with the help of these plugins; otherwise, there might be 44 some licensing issues on the
obtained proprietary binary firmware blob, if it was compiled with the help of some hypothetical proprietary
GCC plugin. The insight driving the bismon tool is the hope to provide small IoT software development
teams with a semi-automatic assistant working in parallel with the developers and improving communication
between team members, later enabling some limited software features extraction (see Asanovic et al. [2006];
Brooks [1987, 1995]; Zuboff [2015]; Pérez et al. [2020]).

g++ -fplugin=chariot 

*.o -lFiWire -o iotapp

Figure 1: the CHARIOT compilation of some IoT firmware or application (simplified)

1.4.2 The power of an existing compiler: GCC

CHARIOT static analysis tools will leverage on the mainstream GCC 45 compiler (generally used as a cross-
compiler for IoT firmware development) Current versions of GCC (that is, GCC 8.2 as of September 2018) are
capable of quite surprising optimizations (internally based upon some sophisticated static analysis techniques
and advanced heuristics). But to provide such clever optimizations, the GCC compiler has to be quite a large
software, of more than 5.28 millions lines 46 of source code (in gcc-8.2.0, measured by sloccount).
This figure is an under-estimation 47, since GCC contains a dozen of domain specific languages and their
transpilers to generated C++ code, which are not well recognized or measured by sloccount.

We show below several examples of optimizations done by recent GCC compilers. Usually, these opti-
mizations happen in the middle-end and work on internal intermediate representations which are mostly not 48

42The actual version and the concrete configuation of GCC are important; we want to stick -when reasonably possible- to the latest
GCC releases, e.g. to GCC 10 in summer 2020. In the usual case, that GCC is a cross-compiler. In the rare case where the IoT system
runs on an x86-64 device under Linux, that GCC is not a cross-, but a straight compiler.

43The 2019 Gnu Compiler Collection is able to compile code written in C, C++, Objective-C, Fortran, Ada, Go, and/or D.
44Of course, I -Basile Starynkevitch- am not a lawyer, and you should check any potential licensing issues with your own lawyer.
45“Gnu Compiler Collection”. See http://gcc.gnu.org/ for more. In practice, it is useful to build a recent GCC cross-compiler,

fitted for your IoT system, from its published source code - see https://gcc.gnu.org/mirrors.html for a list of mirrors.
46Measured by David Wheeler’s sloccount utility
47The Unix wc utility gives 14.6 millions lines, including empty ones but excluding generated C++ code, in 498 megabytes.
48Most of the internal GCC representations -e.g. Gimple or SSA- are common to all target systems; however, some constants, like the

size and alignment of primitive data types such as long or pointers, are known at preprocessing phase or at early Gimplification phase.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 11 of 77

https://gcc.gnu.org/gcc-10/
https://gcc.gnu.org/
http://gcc.gnu.org/
https://gcc.gnu.org/mirrors.html
https://dwheeler.com/sloccount/


the BISMON static source code analyzer

target specific.

recursive inlining with constant folding

Table 2: recursive inlining with constant folding in GCC (C source)

/ / f i l e f a c t i n l i n e 1 2 . c
s t a t i c i n t f a c t ( i n t n ) {

i f ( n <= 1)
re turn 1 ;

e l s e
re turn n * f a c t ( n ´ 1 ) ;

}

i n t f a c t 1 2 ( void ) {
re turn f a c t ( 1 2 ) ;

}
C source code

The table 2 shows a simple example of C code (file factinline12.c). After preprocessing and parsing,
it becomes quickly expanded in some Gimple representation (cf. §12 of GCC Community [2018]), whose
elementary instructions are arithmetic with two operands, or simple tests with jumps, or simple calls (in so
called A-normal form , where nested calls like a=f(g(x),y); get transformed into a sequence introducing
a temporary τ such as τ=g(x) then a=f(τ,y), etc...), shown in table 3.

Table 3: recursive inlining with constant folding in GCC (generated early Gimple)

fact12 ()
{
int D.1420;
D.1420 = fact (12);
return D.1420;

}

fact (int n)
{
int D.1424;
if (n <= 1) goto <D.1422>; else goto <D.1423>;
<D.1422>:
D.1424 = 1;
// predicted unlikely by early return (on trees) predictor.
return D.1424;
<D.1423>:
_1 = n + -1;
_2 = fact (_1);
D.1424 = n * _2;
// predicted unlikely by early return (on trees) predictor.
return D.1424;

}

// factinline12.c.005t.gimple generated by ...
//... /usr/bin/mipsel-linux-gnu-gcc-10 -O3 -S -fverbose-asm \
//... -fdump-tree-gimple -fdump-tree-ssa -fdump-tree-optimized factinline12.c

Gimple code

This is a textual (and quite incomplete since a partial view of some) dump of some in-memory inter-
nal intermediate representation during compilation. What really matters to the CHARIOT static source code
analyzer framework is the data inside the compilation process cc1, not its partial textual dump 49. The

49It is possible to pass the -fdump-tree-all flag to gcc; then hundreds of intermediate textual dump files are emit-

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 12 of 77



the BISMON static source code analyzer

Gimple internal in-memory representation is declared inside several source files of GCC, including its gcc-
8*/gcc/gimple.def, gcc-8*/gcc/gimple.h, gcc-8*/gcc/gimple-iterator.h, etc...

After gimplification, many other optimizations happen. The GCC compiler runs more than two hundred
optimization passes !. The table 4 shows the “static single assignment” form (SSA, see Pop [2006] and GCC
Community [2018] §13), where variables are duplicated so that each SSA variable gets assigned only once.
The control flow is reduced to basic blocks (with a single entry point at start, and perhaps several conditional
exit edges). Then special φ nodes introduce places where such a variable may come from two other ones (after
branches).

Table 4: recursive inlining with constant folding in GCC (generated SSA form)

;; Function fact (fact, funcdef_no=0, decl_uid=1414, cgraph_uid=1, symbol_order=0)
fact (int n)
{
int _1;
int _2;
int _3;
int _8;
int _9;
<bb 2> :
if (n_5(D) <= 1)

goto <bb 3>; [INV]
else

goto <bb 4>; [INV]
<bb 3> :
_9 = 1;
// predicted unlikely by early return (on trees) predictor.
goto <bb 5>; [INV]
<bb 4> :
_1 = n_5(D) + -1;
_2 = fact (_1);
_8 = n_5(D) * _2;
// predicted unlikely by early return (on trees) predictor.
<bb 5> :
# _3 = PHI <_9(3), _8(4)>
return _3;

}

;; Function fact12 (fact12, funcdef_no=1, decl_uid=1417, cgraph_uid=2, symbol_order=1)
fact12 ()
{
int _3;
<bb 2> :
_3 = fact (12);
return _3;

}

Static Single Assignment (SSA) code

At last, many other optimizations happen. And the optimized form in table 5 shows that fact12 just
returns the constant 479001600 (which happens to be the result of fact(12) computed at compile-time).

ted, including factinline12.c.004t.gimple and factinline12.c.020t.ssa and many others for the compilation of
factinline12.c source file.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 13 of 77



the BISMON static source code analyzer

Table 5: recursive inlining with constant folding in GCC (generated optimized)

;; Function fact12 (fact12, funcdef_no=1, decl_uid=1417, cgraph_uid=2, symbol_order=1)
fact12 ()
{
<bb 2> [local count: 118111601]:
return 479001600;

}

optimized form

Table 6: recursive inlining with constant folding in GCC (generated MIPS assembler)

### skipped 72 lines in factinline12.s

.text

.align 2

.globl fact12

.set nomips16

.set nomicromips

.ent fact12

.type fact12, @function
fact12:
.frame $sp,0,$31 # vars= 0, regs= 0/0, args= 0, gp= 0
.mask 0x00000000,0
.fmask 0x00000000,0
.set noreorder
.set nomacro
# factinline12.c:10: return fact (12);
li $2,478937088 # 0x1c8c0000 # tmp196,
# factinline12.c:11: }
jr $31 #
ori $2,$2,0xfc00 #, tmp196,

.set macro

.set reorder

.end fact12

.size fact12, .-fact12

.ident "GCC: (Ubuntu 10.2.0-5ubuntu1~20.04) 10.2.0"

.section .note.GNU-stack,"",@progbits
MIPS assembler

Finally, the generated assembler code has no trace of fact function, and contains just what is shown in
table 6 (where many useless comment lines, giving the detailed configuration of the cross compiler, have been
removed).

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 14 of 77



the BISMON static source code analyzer

heap allocation optimization

Our second example shows that GCC is capable of clever optimizations around dynamic heap allocation
and de-allocation. Its source code in file mallfree.c is shown in table 7.

Table 7: optimization around heap allocation by GCC (C source)

/ / / f i l e m a l l f r e e . c
# i n c l u d e < s t d l i b . h>
i n t weirdsum ( i n t x , i n t y ) {

i n t * a r 2 = m a l loc (2* s i z e o f ( i n t ) ) ;
a r 2 [ 0 ] = x ;
a r 2 [ 1 ] = y ;
i n t r = a r 2 [ 0 ] + a r 2 [ 1 ] ;
f r e e ( a r 2 ) ;
re turn r ;

}
C source code

The straight GCC compiler 50 (on Linux/x86-64) is optimizing and able to remove the calls to malloc and
to free, following the as-if rule.

The Gimple form shown in table 8. Pointer arithmetic has been expanded to target-specific address arith-
metic in byte units, knowing that sizeof(int) is 4.

50Similar optimizations also happen with a GCC MIPS targetted cross-compiler.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 15 of 77

https://en.wikipedia.org/wiki/As-if_rule


the BISMON static source code analyzer

Table 8: optimization around heap allocation by GCC (generated Gimple)

weirdsum ( i n t x , i n t y )
{

i n t D. 2 6 3 9 ;
i n t * a r 2 ;
i n t r ;

a r 2 = m a l loc ( 8 ) ;
* a r 2 = x ;
_1 = a r 2 + 4 ;
*_1 = y ;
_2 = * a r 2 ;
_3 = a r 2 + 4 ;
_4 = *_3 ;
r = _2 + _4 ;
f r e e ( a r 2 ) ;
D.2639 = r ;
re turn D. 2 6 3 9 ;

}

/ / m a l l f r e e . c . 0 0 5 t . g im p l e g e n e r a t e d by . . .
/ / . . . ´O3 ´S ´f v e r b o s e ´asm \
/ / . . . ´fdump´t r e e ´g im p l e ´fdump´t r e e ´s s a ´fdump´t r e e ´o p t i m i z e d m a l l f r e e . c

Gimple code

The SSA/optimized form appears in table 9. It shows that the call to malloc and to free have been
optimized away, so the weirdsum function don’t use heap allocation anymore.

Table 9: optimization around heap allocation by GCC (generated SSA/optimized)

; ; F u n c t i o n weirdsum ( weirdsum , f u n c d e f _ n o =16 ,
; ; ; d e c l _ u i d =2634 , c g r a p h _ u i d =17 , s y m b o l _ o r d e r =16)

weirdsum ( i n t x , i n t y )
{

i n t r ;

<bb 2> [ l o c a l c o u n t : 1073741824] :
r_4 = x_2 (D) + y_3 (D ) ;
re turn r_4 ;

}
SSA/optimized code

So the generated x86-64 assembler code in table 10 contain no calls to malloc or free, hence contains
the same code that would be generated from just int weirdsum(int x, int y) {return x+y;}.

This mallfree.c example could look artificial (because human developers won’t directly code this way).
However, a similar example might happen in real life after preprocessor expansion and inlining in large header-
mostly libraries. Also, equivalent code happens (perhaps after some inline expansion done by any optimizing
compiler) with machine generated C code (e.g. by tools like ANTLR or BISON parser generators, in some JSON

libraries or JSONRPC services) In addition, most genuine C++11 code (e.g. using standard container templates
from <map> or <vector> standard headers) would produce conceptually similar code (since many stan-
dard constructors and destructors would call internally the standard ::operator new and ::operator
delete operations, which get inlined into calling the system malloc and free functions).

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 16 of 77

https://antlr.org/
https://www.gnu.org/software/bison/
http://json.org/
https://www.jsonrpc.org/


the BISMON static source code analyzer

Table 10: optimization around heap allocation by GCC (generated x86-64 assembly)

## 64 lines removed
.text
.p2align 4
.globl weirdsum
.type weirdsum, @function

weirdsum:
.LFB16:

.cfi_startproc
endbr64

# mallfree.c:7: int r = ar2[0] + ar2[1];
leal (%rdi,%rsi), %eax #, r

# mallfree.c:10: }
ret
.cfi_endproc

.LFE16:
.size weirdsum, .-weirdsum
.ident "GCC: (Ubuntu 10.2.0-5ubuntu1~20.04) 10.2.0"
.section .note.GNU-stack,"",@progbits
.section .note.gnu.property,"a"
.align 8
.long 1f - 0f
.long 4f - 1f
.long 5

0:
.string "GNU"

1:
.align 8
.long 0xc0000002
.long 3f - 2f

2:
.long 0x3

3:
.align 8

4:
x86-64 assembly

1.4.3 Leveraging simple static source analysis on GCC

By hooking through CHARIOT specific GCC plugins 51 into usual [cross-] compilation processes (some gcc or
g++, etc... such as a mips-linux-gnu-gcc-8 or a arm-linux-gnueabi-g++-8, etc...), IoT software
developers will be able to take advantage of all the numerous optimizations and processing done by GCC. How-
ever, a typical firmware build would take many dozens of such compilation processes, since every translation
unit (practically *.c C source files and *.cc C++ source files of the IoT firmware) requires its compilation
process 52. In practice, IoT software developers would use some existing build automation tool (such as make,
ninja, meson, cmake etc...) which is running suitable compilation commands. They would need to adapt 53

and configure their build process (e.g. by editing their Makefile-s, etc...), notably to fetch their GCC plugin
C++ code and compile it into some *.so shared object to be later dlopen-ed by some cross-compiler cc1
process, and to use these plugins in their cross-compilation of their IoT firmware. By working in cooperation
with existing GCC compilation tools, the IoT developer don’t have to change much his/her current develop-
ment practices. However, these various compilation processes are producing partial new (or updated) internal
representations, and need to know about other translation units. So some persistence is needed to keep some
data (such as the control flow graph, etc...) related to past 54 compilation processes during perhaps the entire
project development work.

51Notice that GCC plugins work mostly on Linux -but not really on Windows-, so this explains the CHARIOT requirement of [cross-
]compiling IoT firmware on a Linux workstation.

52Technically, a C compilation process would be running some cc1 internal executable started by some *gcc* [cross-] compilation
command.

53How to adapt cleverly their Makefile to take advantage of CHARIOT provided static analysis is of course the responsability of
the IoT developer. Surely several extra lines are needed, and the CFLAGS= line of their Makefile should be changed. For other
builders such as ninja, etc..., some similar configuration changes would be needed.

54Notice that recent GCC provide a link-time optimization (LTO) ability, if the developer compiles and links with e.g. gcc -O2
-flto. But LTO is not widely used since it slows down a lot the building time, and the plugin infrastructure of GCC is not very

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 17 of 77



the BISMON static source code analyzer

IoT developers need to interact with their static source code analysis (GCC based) tool. In particular, they
might need to understand more the optimizations done by their (CHARIOT augmented, thru GCC plugins)
compiler, and they also need to be able to query some of the numerous intermediate data related to that static
analysis and compilation. Practically, a small team of IoT developers working on the same IoT firmware
project would interact with the static analysis infrastructure, that is with a single persistent monitor process.
That persistent monitor (Bismon) would be some “server-like” program, started probably every working day
in the morning and loading its previous state, and gently stopped every evening and dumping its current state
on disk. It needs to keep its persistent state in some files. For convenience, a textual format is preferable 55.
These persistent store files could (and actually should) be regularly backed up and kept in some version control
system.

Since a single Bismon process is used by a small team of IoT developers, it provides some web interface:
each IoT developer will interact with the persistent monitor through his/her web browser 56. In addition, a
static analysis expert (which could perhaps be the very senior IoT developer of the team) will configure the
static analysis (also through a web interface).

The figure 2 gives an overall picture: on the top, both Alice and Bill are working on the same IoT
project source code (and each have a slightly different version of that code, since Alice might work on rou-
tine foo_start in file foo.cc, while Bill is coding the routine bar_event_loop in file bar.c). Both
Alice and Bill (IoT developers in the same team, working on the same IoT firmware) are compiling with the
same GCC cross-compiler (the GCC egg) enhanced by a plugin (the small green puzzle piece, at right of GCC
eggs). They use their favorite editor or IDE to work on the IoT source code, and run from time to time a builder
(e.g. make). They use a browser (with a rainbow in the figure) to interact with the monitor and query static
analysis data. The purple dashed arrows represent HTTP exchanges between their browser and the monitor.
The compilation processes, extended by the GCC plugin, communicate with the monitor (thru the gray dashed
arrows). A static analysis expert (the “geek”, at left of the Bismon monitor) is configuring the monitor thru
his own web interface. The monitor is generating (orange arrow) the C++ code for GCC plugins (small blue
hexagon at right), and the IoT developer needs to change his/her build procedures to compile and use that gen-
erated GCC plugin. Bismon also uses meta-programming techniques to emit (curved blue arrow to left) internal
code (bubble) - notably C code dynamically loaded by the monitor and JavaScript/HTML used in browsers.
The several “Tux” penguins remind that all this (cross-compilers, builders, the persistent monitor, etc...) should
run on Linux systems. The monitor persists its entire state on disk, so can restart in the state that it has dumped
in its previous run.

LTO friendly and would be brittle to use. At last, there won’t be any practical user interface with such an approach. So persistence is
practically needed, both without LTO and if using LTO.

55This is conceptually similar the the SQL dump files of current RDBMS. But of course Bismon don’t use an SQL format, but its
own textual format.

56We don’t aim compatibility with all web browsers -including old ones- but just with the latest Chrome (v.70 or newer) and Firefox
(v.63 or newer) browsers, using HTML5, JavaScript, WebSockets, AJAX technologies.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 18 of 77



the BISMON static source code analyzer

bismon

persistent

Figure 2: The Bismon monitor used by some IoT developer team following the CHARIOT approach.

1.5 Lessons learned from GCC MELT

Our previous GCC MELT project (see Starynkevitch [2011, 2008-2016, 2007]) provided a bootstrapped Lisp-
like dialect (called MELT) to easily extend GCC. That Lisp-like dialect was translated to GCC-specific C++
code (in a transpiler itself coded in MELT). Then GCC MELT gave us the following insights:

• the GCC software is a huge free software project (with several hundreds of contributors, many of them
working on GCC at least half of their time), which is continuously evolving. Following that evolution
requires a significant effort by itself (see for example the mail traffic -of several hundreds messages
monthly- on gcc@gcc.gnu.org and gcc-patches@gcc.gnu.org, and the amount of work
shown at GCC summits or GNU Tools Cauldron, etc...). Switching to Clang would also require a lot
of efforts.

• pushing a patch or contribution inside GCC is very demanding, since the community is quite strict (but
that explains the quality of GCC).

• the GCC plugin API 57 is not “carved in stone”, and can evolve incompatibly from one release of GCC
to the next. Therefore, the C++ code of a plugin for gcc-7 may require some (perhaps non-trivial)
modifications to be usable on gcc-8, etc...

• a lot of C++ code (nearly two millions lines) was generated within our GCC MELT project, and the
compilation by g++ into a shared object of that emitted C++ code was a significant bottleneck.

• Implementing a generational copying garbage collector above Ggc 58 was challenging (debugging GC
code takes a lot of time).

• Describing, in MELT, the interface to the many 59 C++ classes internal to GCC takes a lot of effort. Some
automation would be helpful.

57including of course the API related to internal GCC representations, such as Gimple or SSA.
58This is the internal GCC garbage collector, a mark-and-sweep one which can run only between GCC passes.
59Current GCC-8 have several thousands GTY-ed classes.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 19 of 77

https://gcc.gnu.org/ml/gcc/
https://gcc.gnu.org/ml/gcc-patches/


the BISMON static source code analyzer

• In practice, whole-program static analysis requires a persistent system, since the “link-time optimization”
ability of GCC is not plugin-friendly and is very rarely used.

The final D1.3v2 document may add further relevant items to the above list.

1.6 Driving principles for the Bismon persistent monitor

To enable whole program static source code analysis (for IoT software developers coding in C or C++ on a
Linux developer workstation), we are developing Bismon 60, a persistent monitor (free software, for Linux). It
leverages above existing recent GCC [cross-] compilers.

1.6.1 About Bismon

Bismon (a temporary name) is a free software (GPLv3+ licensed)61 static source code whole-program analysis
framework whose initial domain will be Internet of Things (or IoT)62. It is designed to work with the Gcc
compiler (see gcc.gnu.org) on a Linux workstation63. Bismon is conceptually the successor of GCC MELT
64 (see Starynkevitch [2007, 2011]), but don’t share any code with it while retaining several principles and
approaches of GCC MELT.

Bismon is work in progress, and many things described here (this preliminary draft D1.3 v1 of a future
report D1.3 v2 scheduled for M30 - in 2020) are not completely implemented in 2018 or could drastically
change later.

Bismon is (like GCC MELT was) a domain specific language65 implementation, targetted to ease static
source code analysis (above the GCC compiler), with the following features:

• persistence66, somehow orthogonal persistence. It is needed in particular because compiling some soft-
ware project (analyzed by Bismon) is a long-lasting procedure involving several compiling and linking
processes and commands. So most of the data handled by Bismon can be persisted on disk, and reloaded
at the next run (cf. Dearle et al. [2010, 2009]). However, some data is temporary by nature 67 and should
not be persisted. Such data is called temporary or transient. But the usual approach is to run the Bismon
program from some initial loaded state and have it dump its memory state on disk 68. before exiting (and
reload that augmented state at the next run), and probably more often than that (e.g. twice an hour, or
even every ten minutes).

• dynamic typing69, like many scripting languages70 (such as Guile, Python, Lua, etc). Of course the dy-
namically typed data inside the Bismon monitor is garbage collected (cf. Jones et al. [2016]). The initial
GC of the monitor is a crude, mark and sweep, precise garbage collector, but multi-thread compatible (cf.
§2.2 below); it uses a naive stop-the-world mark&sweep algorithm. That GC should be replaced by a bet-

60Notice bismon is a temporary name and could be changed, once we find a better name for it. Suggestions for better names are
welcome.

61The source code is unreleased but available, and continuously evolving, on https://github.com/bstarynk/bismon
62IoT is viewed as the first application domain of Bismon, but it is hoped that most of Bismon could be reused and later extended for

other domains
63Linux specific features are needed by Bismon, which is unlikely to be buildable or run under other operating systems. My Linux

distribution is Debian/Unstable
64The GCC MELT web pages used to be on gcc-melt.org -a DNS domain relinquished in april 2018- and are archived on

https://starynkevitch.net/Basile/gcc-melt
65See the Domain-specific language wikipage.
66See the persistence wikipage.
67E.g. data related to a web session, or to a web HTTP exchange, or to an ongoing gcc compilation process, etc... needs not to be

persisted, and would be useless when restarting the Bismon monitor.
68Look also into Liam Proven FOSDEM 2018 talk about The circuit less traveled on

https://archive.fosdem.org/2018/schedule/event/alternative_histories/ for an interesting point of view regarding per-
sistent systems.

69See also the dynamic programming language and dynamic typing wikipages.
70See the scripting language wikipage.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 20 of 77

gcc.gnu.org
https://github.com/bstarynk/bismon
https://starynkevitch.net/Basile/gcc-melt
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Persistence_(computer_science)
https://archive.fosdem.org/2018/schedule/event/alternative_histories/
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Dynamic_typing
https://en.wikipedia.org/wiki/Scripting_language


the BISMON static source code analyzer

ter one, such as Ravenbrook MPS 71 something better, if good performance and scalability is wanted in
Bismon. The hard point is the multi-threaded aspect of mutator threads72 in that bismon program. For
more details about the difficulty of clever trade-offs in such multi-threaded and user interaction-friendly
garbage collectors, read carefully chapters 14 to 18 of Jones et al. [2016].

• homoiconicity73 and reflection74 with introspection75 (cf Pitrat [1996, 1990, 2009a,b]; Doucet et al.
[2003]; Carle [1992]): all the DSL code is explicitly represented as data which can be processed by
Bismon, and the current state (including even its continuation represented as a reified call stack, cf Fouet
and Starynkevitch [1987]; Fouet [1987]; Starynkevitch [1990]; Reynolds [1993] and §1.6.2) is accessible
by the DSL.

• translated76 to C code; and generated JavaScript + HTML in the browser, and generated C++ code of
GCC plugins

• bootstrapped77 implementation: (cf. Pitrat [1996]; Polito et al. [2014]) ideally, all of Bismon code
(including C code dealing with data representations, persistent store, etc...) should be generated (but that
won’t happen entirely with the CHARIOT timeframe). However, this ideal has not yet be attained, and
there is still a significant amount of hand-written C code. It is hoped that most of the hand-written C code
will eventually become replaced by generated C code.

• ability to generate GCC plugins: the C++ code of GCC plugins performing static analysis of a single
translation unit should be generated (this was also done in GCC MELT, see Starynkevitch [2011]).

• with collaborative web interface78, used by a small team of trusted and well-behaving developers 79.
The users of bismon are expected to trust each other, and to use the bismon tool responsibly80 (likewise,
developers accessing a git version control repository are supposed to act responsibly even if they are
technically capable of removing most of the source code and its history stored in that repository). So
protection against malicious behavior of bismon users is out of scope.

Since Bismon should be usable by a small team of developers (perhaps two or a dozen of them)81, it is
handling some personal data (relevant to GDPR), such as the first and last names (or pseudos) of users
and their email and maintain a password file (used in the Web login form). Compliance to regulations
(e.g. European GDPR Voigt and Von dem Bussche [2017]; Zuboff [2015]) is out of scope and should be
in charge of the entities and/or persons using and/or deploying Bismon. The login form template 82 could
and probably should be adapted on each deployment site (by giving there site-specific contacts, such as
the GDPR data controller, and perhaps add corporate logos and social rules, etc...). We are sadly aware83

71 Improving that GC is a difficult work, and past experience on GCC MELT taught us that developing and debugging a
GC is hard, and is a good illustration of Hofstadter’s law (See Hofstadter [1979]). We should consider later using MPS from
https://www.ravenbrook.com/project/mps/ -or maybe some other state of the art garbage collector, since MPS might become an
orphaned free software project- but doing that could require recoding or regenerating a lot of code, since MPS -like any other GC- has
specific calling conventions and invariants, including A-normal form. So, switching to MPS or to any other good enough garbage collec-
tor in Bismon would require at least several months of work. And, as an open-source project, MPS looks barely maintained in mid-2019.

72In garbage collection parlance, a mutator thread is an applicative thread needing GC support, e.g. for allocation or updates of GC-
ed memory zones.

73See the homoiconicity wikipage.
74See the reflection wikipage.
75See the self-awareness, type introspection and virtual machine introspection wikipages.
76See also the source-to-source compiler (or transpiler) wikipage.
77Read the bootstrapping (compilers) and Chicken or the egg wikipages.
78See also the web application wikipage, but bismon has highly specific pecularities, detailed more in §4.2 below.
79The initial bismon implementation had a hand-coded crude GTK interface, nearly unusable. That interface is temporarily used to

fill the persistent store till the web interface (generated by Bismon) is usable. The GTK interface is already obsolete and should disappear
at end of 2018. The Web interface (work in progress!) is mostly generated - all the HTML and JavaScript code is generated (or taken
from outside existing projects e.g. JQuery or CodeMirror), and their HTML and JavaScript generators are made of generated C code.

80For example, each bismon user has the technical ability to erase most of the data inside Bismon monitor, but is expected to not do
so. There is no mechanism to forbid or warn him doing such bad things.

81So Bismon, considered as a Web application, would have at most a dozen of browsers -and associated users- accessing it. Hence,
scalability to many HTTP connections is not at all a concern (in contrast with most usual web applications).

82on https://github.com/bstarynk/bismon/blob/master/login_ONIONBM.thtml
83Rabelais wrote in his Pantagruel : “Science sans conscience n’est que ruine de l’âme.” and that very polysemic (so quite difficult

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 21 of 77

https://www.ravenbrook.com/project/mps/
https://en.wikipedia.org/wiki/Hofstadter's_law
https://www.ravenbrook.com/project/mps/
https://en.wikipedia.org/wiki/A-normal_form
https://en.wikipedia.org/wiki/Homoiconicity
https://en.wikipedia.org/wiki/Reflection_(computer_programming)
https://en.wikipedia.org/wiki/Self-awareness
https://en.wikipedia.org/wiki/Type_introspection
https://en.wikipedia.org/wiki/Virtual_machine_introspection
https://en.wikipedia.org/wiki/Source-to-source_compiler
https://en.wikipedia.org/wiki/Bootstrapping_(compilers)
https://en.wikipedia.org/wiki/Chicken_or_the_egg
https://en.wikipedia.org/wiki/Web_application
http://jquery.com/
http://codemirror.net/
https://github.com/bstarynk/bismon/blob/master/login_ONIONBM.thtml
https://en.wikipedia.org/wiki/Gargantua_and_Pantagruel#Pantagruel
https://www.linguee.com/french-english/translation/sciences+sans+conscience+n%27est+que+ruine+de+l%27%C3%A2me.html


the BISMON static source code analyzer

that a mature Bismon system might -exactly like even git could be, and for quite similar reasons- in
the future be unethically [ab-]used (as most current other distributed or Cloud digital technologies, Thain
et al. [2005]; Dikaiakos et al. [2009]; Attiya and Welch [2004]; Peleg [2000]) in abusive ways (e.g.
excessive surveillance Helbing et al. [2019]; Zuboff [2015]; O’Neil [2016]; Huws [2015] of developers
using it), especially when combined with other intrusive automated personel monitoring techniques, such
as face recognition (cf Jain and Li [2011]), email classification (e.g. Klimt and Yang [2004]) or systems
like Chinese Social Credit System.

• multi-threaded - as many “server” like programs, Bismon should practically be multi-threaded to take
advantage of current multi-core processors with shared virtual memory . Therefore synchronization is-
sues (using condition variables and mutexes and/or atomic variables) between threads become important
to avoid race conditions.

• with a syntax-oriented editor or syntactical editor (for our DSLs), inspired by the ideas of MENTOR

in Donzeau-Gouge et al. [1980] (so see also Jacobs and Rideau-Gallot [1992], a tutorial on the related,
even older, CENTAUR system. We should also follow Amershi et al. [2019]). So the static analysis expert
is not typing some raw text (in some concrete syntax of our DSL) later handled by traditional parsing

techniques (as in Aho et al. [2006]) but should interact using a web interface to modify and enhance the
persistent store (like old Lisp machines or Smalltalk machines did in the 1980s), partially shown in a web
browser (see also §4.2 below). That web interface is facilitating refactoring of DSL code.

It should be noticed that Bismon is actually a somehow generic framework, designed and usable to ease
static analysis of C or C++ programs using generated GCC plugins and other runtime emitted code. As an
orthogonally persistent, meta-programmable, reflexive, and multi-threaded framework, and with a few years
of additional work and funding, outside of the CHARIOT project, it could be even used for many other
purposes, including artificial intelligence and data mining applications on small volumes84 of data, web-based
collaborative software tools (see also Echeverria et al. [2019]; Kou and Gray [2019]; Gulay and Lucero [2019];
Dragicevic et al. [2019]), various multi-user web applications, declarative programming approaches, etc...

1.6.2 About Bismon as a domain-specific language

Notice that Bismon is not even thought as a textual domain specific language 85 (and this is possible because it
is persistent). There is not (and there won’t be) any canonical textual syntax for “source code” of the domain
specific language in Bismon 86. Source code is defined (socially) as the preferred form on which developers
are working on programs. For C or C++ or Scheme programs, source code indeed sits in textual files in practice
(even if the C standard don’t speak of files, only of “translation units”, see ISO [2011a]), and the developer
can use any source code editor (perhaps an editor unaware of the syntax of C, of C++, of Scheme) to change
these source files. In contrast, a developer contributing to Bismon is browsing and changing some internal
representations thru the Bismon user interface (a Web interface 87; see also Myers et al. [2000] for a survey)
and interacts with Bismon to do that. There is no really any abstract syntax tree (or AST) in Bismon: what the
developer is working on is some graph (with circularities), and the entire persistent state of Bismon could be
viewed as some large graph in memory.

Conceptually the initial Bismon DSL is at first a dynamic programming language, semantically similar
to Scheme, Python (or to a lesser degree, to JavaScript: however, it has classes, not prototypes, with single-
inheritance), and is somehow compiled or transpiled to C. It is essentially (unlike most Scheme or Python

to translate) sentence was written in 1532!
84The entire analyzed data should fit in Bismon persistent store, so dozens of gigabytes, not terabytes.
85In contrast, GCC MELT was textual and had *.melt source files edited with emacs using its Lisp mode. This made refactoring

difficult, since automatic move of textual fragments was not realistically possible.
86This idea is not new: neither Smalltalk (cf. Goldberg and Robson [1983]), nor Common Lisp (cf. Steele [1990]), are defined as

having a textual syntax with an associated operational semantics based on it. Even the syntax of C is defined after preprocessing. What
is -perhaps informally- defined for Smalltalk and Common Lisp is some abstract internal representation of “source code” in “memory”
and its “behavior”. In contrast, Scheme has both its textual syntax and its semantics well defined in R5RS, see Adams et al. [1998].

87in mid-2018, that Web interface was incomplete, and I still had to temporarily use some obsolete GTK-based interface that even I

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 22 of 77

http://git-scm.com
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Social_Credit_System
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Synchronization
https://computing.llnl.gov/tutorials/pthreads/#ConVarSignal
https://computing.llnl.gov/tutorials/pthreads/#MutexLocking
https://en.wikipedia.org/wiki/Atomic_semantics
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Source-to-source_compiler


the BISMON static source code analyzer

or JavaScript implementations) a multi-threaded language, since the emitted routines can run in parallel in
our agenda machinery (cf. §1.7 below). Meta-programming techniques (inspired by Lisp macro systems, see
Queinnec [1996], and largely experimented in GCC MELT) will ease the extension of that language.

The base Bismon DSL is currently implemented 88 as a naive transpiler to C code (respecting the coding
rules of our implementation, in particular of our garbage collector, see §2.2).

Our initial DSL is designed in terms of code representations as objects (see §2.1.2 below) and immutable
values (see §2.1.1 below). It is not defined by some EBNF textual syntax. For example, an assign statement
α = β is represented by an object of class basiclo_assign with its first component representing the left
hand-side α and the second component representing the right hand-side β. Expressions in our DSL are either
objects, or nodes, or scalars (integers, strings, etc...).

What is transpiled to C are Bismon “modules” (for example our webjs_module contains code related
to emission of JavaScript), each with a sequence of routines. A module can be dumpable (into the persis-
tent state, which then contains also the generated C code) or temporary (then the generated C code is not
kept in that state). A routine or function 89 is an object of class basiclo_function or its subclass
basiclo_minifunction, etc... A function knows its arguments, local variables, local numbers, body
by various attributes (e.g. arguments, locals, numbers, body etc...). Its body is a block made of state-
ments.

Statements of our DSL include:

• assignments, of class basiclo_assign, as explained above.

• run statements, of class basiclo_run, which “evaluates” its single operand for side effects (similar to
expression statements in C or Go). As a special (and rather common) case, that operand can be a “code
chunk” (conceptually similar to GCC MELT’s code chunks, see Starynkevitch [2011] §3.4.1), that is a
node of connective chunk providing a “template” for expansion as C code.

• conditional statements, of class basiclo_cond, inspired by Lisp’s cond. Its components are a
sequence of when clauses (which are objects of class basiclo_when) followed the “else” statements
or blocks. The nb_conds attribute in the statement gives the number of when clauses.

• for loops, we have a basiclo_while class of statements (for “while” loops) and a basiclo_loop
class (for infinite loops). Exiting of loops and blocks are using the basiclo_exit class. Return

statements use the basiclo_return class.

• failure (inspired by Go’s panic) statements are of class basiclo_fail. Failures are not exceptions,
but prematurely terminate the tasklet (of the agenda, see §1.7 below) running the function containing that
statement.

• locking of objects use a basiclo_lockobj class (mentioning both an object to lock and a sequence of
sub-statements or blocks). A locked object is unlocked when the end of its locking statement is reached,
or when the currently active routine terminates (on failure or on return).

• execution of primitive side-effecting operations with no result happens in C-expansion statements (of
class basiclo_cexpansion), inspired by GCC MELT’s primitives (see Starynkevitch [2011]) re-
turning :void.

• etc...

Expressions in our DSL are typed (with types like value, object, int, string, etc...) and include:

• scalar (integers, constant strings)

find so disgusting that I won’t explain it, and sometimes even to edit manually some store2.bmon data file, cf § 2.3.1.
88See notably our hand-written files gencode_BM.c and emitcode_BM.c in october 2018. Our bootstrap philosophy might

require replacing later these hand-written files by better, bismon generated, modules.
89Technically the routine would be in the module’s shared object binary; the function is a Bismon object reifying the code of that

routine.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 23 of 77



the BISMON static source code analyzer

• local variables, or arguments, or numerical variables (of the current function).

• constant objects (mentioned with constants in the function)

• closure application (represented by a node of connective apply). Often, the closure’s connective would
be a function object.

• quotations (like in Lisp, represented by an unary node of connective exclam)

• message sending (represented by a node of connective send)

• primitives (inspired by GCC MELT’s ones, see Starynkevitch [2011]; the connective of the node is of
class basiclo_primitive)

• builtin objects like current_closure, current_closure_size, current_module, current_routine,
null_value, null_object are expanded in some ad-hoc fashion 90.

• etc...

1.6.3 About Bismon as a evolving software system

So Bismon is better thought of as an evolving software system. We recommend to try it. Notice that Bismon is
provided as free software (available on https://github.com/bstarynk/bismon/ but unreleased in 2018) in
source form only and should be usable only on a Linux/x86-64 workstation... (typically, at least 32 gigabytes
of RAM and preferably more, at least 8 cores, several hundreds gigabytes of disk or SSD).

The Bismon system contains persistent data (which is part of the system itself and should not be con-
sidered as “external” data; each team using Bismon would run its own customized version of their Bismon
monitor.), and should be regularily backed up, and preferably version controlled at the user site. It is strongly
recommended to use git 91 or perhaps some other distributed version control system, to git commit its
files several times a day (probably hourly or even more frequently, as often as a developer is committing
his C++ code), and to backup the files on some external media or server at least daily. How that is done
is outside of the scope of this document. The dump facilities inside Bismon are expected to be used quite
often (as often as you would save your report in a word processor, or your source file in a source code edi-
tor), probably several times per hour. So a developer team using Bismon would probably git clone either
git@github.com:bstarynk/bismon.git thru SSH or https://github.com/bstarynk/bismon.git,
build it (after downloading and building required dependencies), and work on that git repository (and of course
back-up it quite often).

We are still growing Bismon by feeding it with additional interactions changing its persistent state. At
first, we developed (at begin of bootstrap) a crude GTK interface, shown in figure 3, which is a screenshot
made on October 22nd 2018 on git commit cbdcf1ec351c3f2a, when working on the JavaScript generator
inside Bismon. It shows several windows: the large top right window (named new-bismon) has a command
textview (ivory background, top panel) and a command output (azure background, bottom panel). The small top
left window (named bismon values show the read-eval-print-loop output (as $a in two panes). The mid-
sized bottom left window (titled bismonob#1) shows (in two text-views of the same GTK text buffer) shows
(in top text-view) a large part of the body of the emit_jsstmt method for the basiclo_while class of
Bismon and (in bottom text-view) some components of our webjs_module object. In the rear, bottom right,
a tiny part of our emacs editor (used to run bismon -gui...) is visible, and shows a backtrace 92.

This crude GTK3 interface 93. Anonymous objects are displayed also with their comment predefined
attribute94. We won’t debug that GTK code -which crashes often95- but will remove it once it can be replaced

90That is: current_closure Ñ the current closure; current_closure_size Ñ its size; current_module Ñ the
current module; current_routine Ñ the current routine; null_value Ñ the null value; null_object Ñ the null object;
respectively.

91See http://git-scm.com/
92Ian L. Taylor’s libbacktrace is used in bismon to provide symbolic backtraces.
93It is implemented in 12.5KLOC of C code in gui_GTKBM.c, newgui_GTKBM.c and guicode_BM.c
94See not only the comment wikipage but think of a comment macro in LISP, SCHEME or GCC MELT which would ignore all its

arguments and stays macro-expanded to nil.
95Because of a design bug related to garbage collection, practically too costly to be fixed.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 24 of 77

https://github.com/bstarynk/bismon/
https://github.com/bstarynk/bismon.git
http://git-scm.com/
https://github.com/ianlancetaylor/libbacktrace
https://en.wikipedia.org/wiki/Comment_(computer_programming)


the BISMON static source code analyzer

Figure 3: crude (soon deprecated) GTK interface oct. 22, 2018, git commit cbdcf1ec351c3f2a

by a web interface. It will and needs to be replaced by a Web interface. Several lessons have been gained with
this experience:

• using GTK 96 is in practice incompatible with a multi-threaded precise garbage collector 97, like the one
in Bismon (cf §2.2 below), in particular because GTK may have several nested event loops, so many local
garbage collector pointers in internal call frames (which are not accessible from routines above).

• the model and the C API provided by GTK text views and text buffers is not adequate for structured
syntactic editing (like pionneered in Mentor, see Donzeau-Gouge et al. [1980]). It is still too low-level
and oriented for plain textual edition.

• GTK is not compatible with several X11 displays, so a single bismon process cannot handle several users
each having its own screen.

So we decided to stop investing efforts on the GTK interface, and give more priority to a Web interface,
which is required once a small team of several IoT developers need to interact with the bismon persistent
monitor. The GTK interface is just temporarily needed to fill the persistent store (till our web interface is
usable). We hope that it will be entirely scrapped and should be replaced by a web interface98 , and the static
analysis expert (and other users pof Bismon) will interact with bismon thru some Web interface.

Work on the future Web interface has significantly progressed 99. New users -called contributors - can be
96Since GTK is a free software library, we could consider patching its source code, but such a huge effort is not reasonable within

the timeframe of CHARIOT, and GTK is still evolving a lot, so patching it would require freezing its version. gtk+-3.24.1 has 1.2
millions lines of source code, measured by D.Wheeler sloccount but it depends also on other libraries, such as Pango, Glib, etc...
so patching GTK source for our precise GC is not reasonable at all.

97See also https://stackoverflow.com/q/43141659/841108 about GTK and Boehm’s conservative GC.
98Notice that copy/pasting becomes then a difficult issue, see https://softwareengineering.stackexchange.com/q/393837/40065.
99With the hand-written web_ONIONBM.c using libonion, and the bismon module webjs_module translated into the

modules/modbm_1zCsXG4OTPr_8PwkDAWr16S.c emitted C file of more than 6.5KLOC in october 2018.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 25 of 77

https://stackoverflow.com/q/43141659/841108
https://softwareengineering.stackexchange.com/q/393837/40065


the BISMON static source code analyzer

voluntarily registered and unregistered on the command line 100 into bismon in a way similar to git. When
they access any dynamic web page, a login web form appears (with some GDPR related notice) if no web
cookie identifies them. But that Web interface is still incomplete in October 2018. Several design decisions
have been made: we will use the codemirror 101 web framework to show the analyzed source code of IoT
software. The web interface for IoT developers should be a “single-page application” one (so AJAX, HTML5,
CSS3 techniques, with generated JavaScript and HTML code). WebSockets should be used for asynchronous
communication between browser and the bismon monitor. The jquery, angular, semantic-ui, etc...
web frameworks are considered as building blocks for that Web interface and should be installed with inside
bismon 102 to enable using bismon without any external Internet connection.

IoT developers working with the Bismon monitor will use some Web interface to interact with it.

1.6.4 About Bismon as a static source code analyzer framework

The Bismon persistent monitor will generate the C++ code of GCC plugins, leveraging on the experience of
GCC MELT (see Starynkevitch [2011, 2007, 2008-2016]). The C++ code generator will have a design similar
to (and share some code and classes with) our internal initial DSL (cf §1.6.2). It is extremely likely that in many
cases, such a generated GCC plugin would just insert its appropriate passes by using the pass manager (cf GCC
Community [2018] §9 and §24.3), and these passes will “serialize” internal representations (either in JSON,
or using Google protocol buffer, or using a textual format close to our dump syntax, see figure 5 below, etc...)
such as Gimple-s, Basic Block-s and transmit some form of them to the Bismon persistent monitor. In some
simple cases, it is not even necessary to transmit most of that representation. For instance, a whole program
static analysis to help avoiding stack overflow needs just the size of each call frame 103 and the control flow
graph (so only the Gimple call statements, ignoring anything else); with that information (and the control flow
graph) the monitor should be able to estimate an approximation 104 of the consumed call stack, whole program
wide.

Several design decisions have been made regarding the style of the generated C++ code of GCC plugins:
it will use existing scalar data and GTY-ed classes (see GCC Community [2018] §23), to take advantage of
the existing GCC garbage collector (Ggc). Contrarily to GCC MELT, it won’t provide a generational garbage
collector (because most of the processing happens in the monitor, hence performance of the generated GCC
plugin105 is less important), so transforming to A-normal form is not required at translation (to C++) time.

1.7 Multi-threaded and distributed aspects of Bismon

The Bismon monitor is by itself a multi-threaded process 106. It uses a fixed thread pool of worker threads (often
active) 107, and additional (generally idle) threads for web support and other facilities. The Bismon monitor is
occasionally starting some external processes, in particular for the compilation of generated GCC plugins, and
for the compilation into modules -technically “plugins”- of dynamically generated C code by Bismon; later
it will dynamically load (with dlopen) these modules, and thus Bismon can increase its code (but cannot
decrease it, even if some code becomes unused and unreachable); however such modules are never garbage
collected (so dlclose is never called). So in practice, it is recommended to restart Bismon every day (to
avoid endless growth of its code segments).

100Use the option -contributor= to add them, -remove-contributor= to remove them and -add-passwords= to set
their encrypted bismon-specific password.

101See http://codemirror.net/ for more.
102For example, the bismon source tree has a webroot/jscript/jquery.js local file to serve HTTP GET requests to an URL

like http://localhost:8086/jscript/jquery.js handled by the bismon monitor.
103Notice that GCC compute these call frame sizes (see the -fstack-usage option), and can detect excessively big call frame

with -Wstack-usage= option.
104Of course dynamic calls, e.g. call thru function pointers, make that much more complex and will require manual annotation.
105In practice, generated GCC plugins would simply “digest” some internal GCC representations and transmit their outcome to the

Bismon monitor.
106In contrast of most scripting languages implementations such as Python, Ocaml, Ruby, etc..., we try hard to avoid any “global

interpreter lock” and strive to develop a genuinely multi-threaded monitor.
107The number of worker threads is given by the -job program argument to bismon. For an 8-cores workstation, it is suggested

to set it to 5 or 6. It should be at least 2, and at most 15. This number of jobs also limits the set of simultaneously running external
processes, such as gcc processes started by Bismon.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 26 of 77

http://jquery.com/
https://angular.io/
https://semantic-ui.com/
http://codemirror.net/


the BISMON static source code analyzer

The worker threads of Bismon are implementing its agenda 108 machinery. Conceptually, the agenda is a 5-
tuple of first-in first-out queues of tasklets, each such FIFO queue is corresponding to one of the five priorities
: very high, high, normal, low, very low. Each agenda worker thread removes one tasklet (choosing the queue
of highest possible priority which is non empty, and picking the tasklet in front of that queue) and runs that
tasklet quickly. A tasklet should run during a few milliseconds (e.g. with some implicit kind of non-preemptive
scheduling) at most (so cannot do any blocking IO; so input and output happens outside of the agenda). It
may add one or more tasklets (including itself) to the agenda (either at the front, or at the end, of a queue of
given priority), and it may remove existing tasklets from the agenda. Of course tasklets run in parallel since
there are several worker threads to run the agenda. The agenda itself is not persisted as a whole, but tasklets109

themselves may be persistent or transient. Tasklets can also be created outside of the agenda (e.g. by incoming
HTTP requests, by completion of external processes, by timers, ...) and added asynchronously into the agenda.

Outside of the agenda, there is an idle queue of delayed todo closures (a queue of closures to be run, as if
it was an idle priority queue) with some arguments to apply to them. But that idle queue don’t contain directly
any tasklets. That idle queue can be filled by external events 110. Of course the idle queue is not persisted.

In its final version, the Bismon system will involve several cooperating Linux processes:

• the Bismon monitor itself, with several threads (notably for the agenda mechanism described above)

• the web browsers of developers using that particular Bismon monitor; each developer probably runs
his/her own browser. That web browser is expected to follow latest Web technologies and standards
(HTML5, Javascript6 i.e. EcmaScript 2016 at least, WebSockets, ...). It should probably be a Firefox
or a Chrome browser from 2017 or after. The HTML and Javascript is dynamically generated by the
Bismon monitor and should provide (to the developer using Bismon) some “single-page application” (cf.
Atkinson [2018]; Queinnec [2004]; Graunke et al. [2003]) feeling 111.

• the IoT developers using Bismon will build their IoT firmware as usual; however they will add some extra
options (to their gcc or g++ cross-compilation commands) to use some Bismon generated GCC plugin
in their cross-compilation processes. So these cross-compilation processes (i.e. cc1 started from gcc,
or cc1plus started from some g++, etc...), augmented by generated plugins, are involved.

• sometimes Bismon would generate some modules/*.c file during execution, and fork a (direct) com-
pilation of it (technically forking a ./build-bismon-persistent-module.sh -for persistent
modules- or a ./build-bismon-temporary-module.sh -for temporary modules- shell script,
which invokes make which runs some gcc command) into a “plugin” module modubin/*.so, which
would be dlopen-ed.

• Bismon should also generate the C++ code of GCC plugins, to be later compiled then used (with gcc or
g++ option -fplugin). Two kinds of GCC plugins are considered to be generated:

1. usually, the GCC plugin 112 would be generated to assist [cross-] compilation (e.g. of IoT software)
by developers using Bismon. So for an IoT developer targeting some RaspberryPi, it could be a
GCC plugin targeting the arm-linux-gnueabi-gcc-8 cross-compiler (but the C++ code of
that plugin needs to be compiled by the native gcc on the host system).

2. But the GCC API is so complex (and under-documented) that it is worth extracting it automatically
108Details about the agenda, such as the fixed set of available priorities, are subject to change. We describe here the current imple-

mentation in mid-2018.
109Actually tasklets are objects (see §2.1.2 page 30 below), and to run them, the agenda is sending them a message with the predefined

selector run_tasklet.
110For example, when an external compilation process completes, that queue is filled with some closure -provided when starting that

compilation- and, as arguments, an object with a string buffer containing the output of that process, and the integer status of that process.
111So using your browser’s backward and forward navigation arrows won’t work well because in single-page applications they cannot

work reliably
112It is tempting to call such plugins cross-plugins, since they would be dlopen-ed by a cross-compiler.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 27 of 77



the BISMON static source code analyzer

by sometimes generating a GCC plugin 113 to inspect the public headers of GCC114. Even when the
end-user developer is targetting a small IoT chip requiring a cross-compiler (like arm-linux-
gnueabi-gcc-8 above), these GCC inspecting plugins are for the native gcc (both Schafmeister
[2016] and Schafmeister [2015] are inspirational for such an approach).

We are considering several ways of providing (to the IoT developer using them) such generated C++ code
for GCC plugins. We might generate (at least for the first common case of GCC plugins generated for
developers using Bismon, and large enough to need several 115 generated C++ files) *.shar archives
(obtained by Web requests, or perhaps some wget or curl command in some Makefile) for GNU
sharutils 116 containing the C++ code and also the g++ command compiling it. That archive could
instead be just a .tar.gz file (and the IoT developer would extract it, and run make or ninja inside
the extracted directory to build the shared object GCC plugin binary file), etc... For a small generated
GCC plugin fitting in a single generated C++ file of less than a dozen thousands lines, we could simply
serve in Bismon an URL like http://localhost:8086/genplugin23.c and require the IoT
developer to fetch then use that. Other approaches could also be considered. The rare second case (GCC
plugin code generated to inspect the GCC API, running on the same machine as the Bismon server) could
be handled thru external processes (similar to compilation of Bismon modules). Alternatively, we might
consider delegating such plugin-enhanced cross-compilation processes to the Bismon monitor itself, etc,
etc...

In principle, the various facets of Bismon can run on different machines as distributed computing (obviously
the web browser is not required to run on the same machine as the Bismon monitor, but even the various
compilations -of code generated by Bismon, and the cross-compilation of IoT code- could happen on other
machines).

Conceptually, we aim for a multi-tier programming approach (inspired by Ocsigen 117 with the high-level
DSL inside Bismon generating code: in the Bismon monitor, as modules; in the web browser, as generated
Javascript and HTML; in the GCC compiler, as generated GCC plugins.

113It is tempting to call such plugins straight-plugins, since they would be dlopen-ed by a straight compiler, not a cross-compiler.
114In GCC MELT, we tried to describe by hand-coded MELT code a small part of that GCC API and its glue for MELT. This approach

is exhausting, and makes following the evolution of GCC very difficult and time-consuming, since new MELT code should be written
or manually adapted at each release of GCC. Some partial automation is needed to ease that effort of adapting to successive GCC
versions and their non-compatible plugins API

115By past experience in GCC MELT, we did generate C++ files totalizing almost a million lines of C++ code, and compiling such a
large generated C++ code base took dozens of minutes, and created a bottleneck.

116See https://www.gnu.org/software/sharutils/ for more.
117See https://ocsigen.org/

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 28 of 77

https://www.gnu.org/software/sharutils/
https://ocsigen.org/


the BISMON static source code analyzer

2 Data and its persistence in Bismon

Notice that persistent memory is also a hardware technology sold by Intel. See pmem.io and Scargall [2020].
With care and programming efforts, such hardware could be used by the Bismon monitor.

Several checkpoint/restarting mechanisms, such as the CRIU library, are conceptually similar to the persis-
tence mechanism118 existing in BISMON, but have been developed with different trade-offs, and no concern for
portability.

2.1 Data processed in Bismon

The Bismon monitor handles various kinds of data. A lot of data is immutable (its content cannot change once
the data has been created, for example strings). But objects are of course mutable and can be modified after
creation. Since Bismon is multi-threaded and its agenda is running several worker threads in parallel, these
mutable objects contain a mutex for locking purposes.

So the Bismon monitor handle values 119 (represented in a 64 bits machine word, holding some pointer or
some tagged integer) : they can be immutable, or objects (and such objects are the only kind of mutable data).

All values (immutable ones and mutable objects) are hashable 120 and totally ordered.

Since Bismon is able to persist and process efficiently and concurrently many kinds of symbolic data or-
ganized more or less in a semantic network (including most abstract syntax trees or AST-s and their symbolic
annotations), it should be re-usable with additional efforts as a foundation for many other aspects 121 of static
source code analysis, even of programming languages which are not tied to GCC. Of course, some significant
work related to parsing is then required.

The BARRELFISH operating system (see Gerber [2018]; Giceva et al. [2016]; Schüpbach et al. [2008]...)
has a System Knowledge Base “used to store, query, unify, and compute on a variety of data about the current
running state of the system” which is “based on a port of the ECLIPSE constraint logic programming system”
Apt and Wallace [2006] (from Barrelfish [2013]), and BARRELFISH aims be used for IoT computer networks.

2.1.1 Immutable values

They include

• tagged integer (of 63 bits, since the least significant bit is a tag bit). The integer won’t change (and
integer values don’t require extra space to keep that integer, since they are encoded in the pointer).

• UTF-8 encoded string (the bytes inside such strings don’t change).

• boxed constant double (IEEE 754) floating point 122 numbers; but NaN is never boxed and becomes
reified as the nan_double object; hence boxed doubles stay comparable (with the convention 123 that
´0.0 ă `0.0, even if they compare equal in IEEE 754).

• tuple of objects, that is an ordered (but immutable) sequence of object pointers (the size or content of a
tuple don’t change). A given object could appear in several positions in a tuple.

• set of objects, represented internally as a sorted array of objects’ [i.e. pointers]. A given object can occur
only once in a set, and membership (of an object inside a set) is tested dichotomically in logarithmic
time. Of course, the size and content of a set never change.

118See stackoverflow.com/a/62927624/841108 for more.
119To extend Bismon to handle some new kind of custom data (such as bignums, images, neural networks, etc...) processed by external

libraries, it is advised to define new payloads inside objects (cf. §2.1.2 below), without adding some new kind of values.
120Their hash is a non-zero 32 bits unsigned number. Only the nil pointer has an hash of 0.
121For an example, look into the ongoing DECODER H2020 project, ICT-16 call, grant agreement number 82423.
122The practical motivation for floating point numbers is mostly related to JSON, since the jansson library handle differently

floating JSON and integer JSON values, and perhaps to rare storage of timing data (CPU or elapsed time) expressed as a floating point
number. We don’t intend Bismon to be used for complex numerical processing. Should machine learning libraries become useful - after
the CHARIOT project - in bismon, their data would probably become some object payload.

123The intuition behind such a convention would be that ´0.0 is a very (or infinitely) small negative number, so less that `0.0 which
could be a very small positive number.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 29 of 77

https://pmem.io/
https://github.com/checkpoint-restore/criu
http://www.barrelfish.org/
https://eclipseclp.org/
https://stackoverflow.com/a/62927624/841108
https://www.decoder-project.eu/


the BISMON static source code analyzer

• node. A node has an object connective, and a (possibly empty, but fixed) sequence of sons (sons are
themselves values, so can themselves be integers, strings, tuples, sets, sub-nodes). The connective, size
and sons of a node don’t change with time. Since a node is immutable and knows all its sons at creation
time, circularity (e.g. a node having itself as some grand-son) inside it is impossible, and the node has a
finite depth. Nodes whose connective is an instance of transient_connective_object are not
dumped so are transient.

• closure. A closure is like a node (it has a connective and sons), but its connective is interpreted as the ob-
ject giving the routine (see §2.1.2 below) to be called when that closure is applied, and its sons are consid-
ered as closed values. Closures whose connective is an instance of transient_connective_object
are not dumped so are transient.

The nil value is generally not considered as a value, but as the absence of some value. We might (later)
add other kind of values (perhaps vectors of 64 bits integers, of doubles, bignums ...), but they should all be
immutable. However, it is very likely that we prefer complex or weird data to sit inside objects, as payload.
There is also a single unspecified value (which is non-nil so cannot be confused with lack of value represented
by nil).

Tuples and nodes and closures could contain nil, but sets cannot. A node or closure connective is a genuine
object (so cannot be nil), even if nodes or closures could have nil sons.

Sets and tuples are sometimes both considered as sequences and share some common operations.
The immutable values are somehow lightweight. Most of them (strings, sets, tuples, nodes) internally keep

some hash-code (e.g. to accelerate equality tests on them, or accessing hash tables having values as keys). The
memory overhead for values is therefore small (a few extra words at most, to keep GC-data type and mark, size
hash).

The size of values (byte length of strings, number of objects in tuples or sets, number of sons in nodes or
closures) can in principle reach 231 ´ 1 but is generally much smaller (often less than a few dozens) and could
be 0.

Mutable values outside of objects (and their payload, see §2.1.2 below) cannot exist.
Values (even references to objects, e.g. inside sequences or nodes) are represented as a machine pointer and

fit in a 64 bits word. When its least significant bit is 1, it is a tagged integer.
Values, including objects, are comparable so sortable. For strings, nodes, closures, sets, tuples we use a

lexicographical order. Values also have an hashcode to be easily put in hash tables, etc..

2.1.2 Mutable objects

Objects are the only kind of mutable values, and are somehow heavy (at least several dozens of machine words
in memory for each object). They can be accessed nearly simultaneously by several worker threads running
different tasklets, so they need a locking mechanism and contain a (recursive) mutex 124 (so in reality only one
thread is accessing or modifying them at a given instant).

Conceptually, objects contain the following data:

• a constant unique serial id (of about 128 bits), called the objid, randomly generated at object creation time
and never changed after. In many occasions, that objid is printed as 24 characters (two glued blocks of 12
characters each, the first being an underscore _, the second being a digit, the 10 others being alphanumerical with
significant case) such as _4ggW2XwfXdp_1XRSvOvZqTC 125 or _0xbmmxnN8E8_0ZuEqJmqMNH. It
is expected that objid collisions never occur in practice, e.g. that even thousands of Bismon monitor pro-
cesses (running on many distant computers) would in fact never generate the same objid. In other words,
our objids are as unique as UUIDs (from RFC 4122) are (but are displayed differently, without hyphens).
In practice, the first 5 or a few more characters of an objid are enough to uniquely identify it, and we use

124Each object has its mutex initialized with pthread_mutex_init(3p) with the PTHREAD_MUTEX_RECURSIVE attribute, and
lockable with pthread_mutex_lock(3p) etc...

125That objid _4ggW2XwfXdp_1XRSvOvZqTC is for the predefined object the_system, and corresponds to the two 64 bits
numbers 3577488711679049683 (encoded in base 62 “ 10`2ˆ26 as 4ggW2XwfXdp), 1649751471969277032 i.e. to 128 bits hexadecimal
0x31a5cb0767997fd316e5183916681468.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 30 of 77

https://tools.ietf.org/html/rfc4122
http://man7.org/linux/man-pages/man3/pthread_mutex_init.3p.html
http://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html


the BISMON static source code analyzer

the objid abbreviation 126, e.g. _4ggW2XwfX - an abbreviation for _4ggW2XwfXdp_1XRSvOvZqTC
- to uniquely identify it. The concrete textual “syntax” for objid-s (starting with an underscore then a
digit, etc...) is carefully chosen to be compatible and friendly with identifiers in C, C++, JavaScript,
Ocaml, etc. The Bismon runtime maintains a large array of hashtables and mutexes to be able to quickly
find the object pointer of a given objid (if such an object exists in memory). The objid is used to compare
(and sort) objects. The (32 bits, non-zero) hash code of an object is obtained from its objid (but it is
cached in the object’s memory, for performance reasons).

• the recursive mutex lock of that object 127. So locking (or unlocking) an object really means using that
lock on pthread mutex operations 128.

• a space number fitting in a single byte. The space 0 is for transient objects that are not persisted to disk.
The space 1 is for predefined objects (there are about 60 of them in Q3 of 2018), which are conceptually
created before the start of Bismon monitor processes and are permanently available, even at initial load
time of the persistent store. Those predefined objects are dumped in file store1.bmon, the objects of
space 2 (conventionally called the global space) are dumped and persisted in file store2.bmon, etc...

• the mtime of an object holds its modification time, with a millisecond granularity, since the Unix Epoch.
Touching an object is updating its mtime to the current time.

• the (mutable!) class of an object is an atomic 129 pointer to an object (usually another one) describing its
class, as understood by Bismon. It is allowed to change dynamically 130 the class of any object. Classes
describe the behavior (i.e. the dictionary of “methods”), not the content (i.e. the “attributes”) of objects
and enable single-inheritance (every class has one super-class).

• the attributes of an object are organized as an hash-table associating attribute or key objects to arbitrary
non-nil values. An attribute is an arbitrary object, and its value is arbitrary (but cannot be nil).

• the components of an object are organized as a vector (whose size can change, grow, or shrink) of values.
A component inside an object is a value (possibly nil).

• objects may contain one routine pointer (or nil), described by

1. the routine address inside an object is a function or routine pointer (in the C sense, possibly and
often nil). The signature of that function is described by the routine signature 131

2. the routine signature is (when the routine address is non-nil) describing the signature of the routine
address above.

Notice that routine address and signature can only change when a new module 132 is loaded (or at initial
persistent state load time), and that can happen only when the agenda is inactive. Conceptually they are
mostly constant (and do not require any locking).

Most (in 2018, all) routines have the same C signature objrout_sigBM corresponding to the prede-
fined object function_sig. For an object of objid Ω of that signature its routine address corresponds
to the C name croutΩ_BM. For instance, to initialize (at load time) the object of oid _9CG8SKNs6Ql_4PiHd8cnydn
the initial loader (or the module loader) would dlsym the crout_09Hug4WGnPK_7PpZby8pz84_BM
C function name.

126This objid abbreviation is for documentation purposes; it is not acceptable in persistent store files.
127We have considered using a pthread rwlock instead of a mutex, but that would probably be more heavy and perhaps slower, but

could be experimented in the future.
128So accessing without the protection of that lock being hold, any data inside an object, other than its constant objid, its class, its

routine pointer, is forbidden and considered as undefined behavior
129Here, “atomic” is understood in the C or C++ memory sense; so a pointer declared _Atomic in C or std::atomic in C++,

supposing that they are the same and interoperable. Hence the class of an object can be obtained without locking that object.
130Changing classes is permitted within reasonable bounds: the class of all classes should remain the class predefined object; all

objects should be instances of the predefined object or more often of some indirect sub-class of it; of course these invariants cannot
be proved.

131Perhaps all our routines will keep the same signature, and then it would not need to be explicitly stored.
132The generated C code of modules also contains an array of constant objids, ana another array of routine objids.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 31 of 77



the BISMON static source code analyzer

• objects may also have some (nearly arbitrary) payload - which can contain anything that don’t fit else-
where. That payload 133 is a pointer (possibly nil) to some client data owned by the object; the payload is
usually not a value but something else. The garbage collector should know all the payload types. In 2018
the following payloads are possible (with other specialized payloads, e.g. for parsing, loading, dumping
and web request and web session support, contributors):

1. mutable string buffer.

2. mutable class information (with its super class, and the method “dictionary” associating objects
-selectors- to closures). The class objects are required to have such a payload.

3. mutable vector of values (like for components).

4. mutable doubly linked list of non-nil values.

5. mutable associative table associating objects to non-nil values (like for attributes)

6. mutable hash set of objects.

7. mutable hash maps to associate arbitrary non-nil values used as keys to other arbitrary non-nil
values.

8. mutable string dictionaries associating non-empty strings to non-nil values.

9. mutable JSON data 134

10. etc...

Of course, the payload of an object should be initialized (so created), accessed, used, modified, changed
to another payload, cleared (so deleted) only while that object is locked, and each payload belongs to
only one object, its owner.

The ability to have arbitrary attributes and components in every Bismon object makes them very flexi-
ble (cf. Lenat [1983]; Lenat and Guha [1991]), and is on purpose related to frame languages (cf. Bobrow
and Winograd [1977]), semantic networks (cf Van De Riet [1992]) and ontology engineering (cf Nicola et al.
[2009]).

For convenience, (some) objects can also be (optionally) named, in some top-level “dictionary” or “symbol
table” (which actually contain weak references to named objects). But the name of an object is not part of it.

2.2 garbage collection of values and objects

The Bismon monitor has in 2018 a precise, but naive, mark&sweep stop-the-world garbage collector for values
135, of course including objects. When the GC is running, the agenda has been de-activated, and no tasklets are
running. Our initial GC is known to not scale well and to be unfriendly to serious interactive usage, so it should
be replaced (see footnote 71 in §1.6.1 above).

In contrast to most GC implementations (but inspired by the habits of GCC itself -in its Ggc garbage
collector- in that area), the garbage collector of the Bismon monitor is not directly triggered in allocation
routines (but is started by the agenda machinery). When allocation routines detect that a significant amount
of memory has been consumed, they set some atomic flag for wanting GC, and later that flag would be tested
(regularily) by the agenda machinery which runs the GC. So when the GC is actually running, the call stacks
are conceptually empty 136, and no tasklet is active.

The garbage collection roots include:
133Some weird payloads, in particular for web exchanges and web sessions, cannot be created programmatically by public functions

or by Bismon code. Web exchange and web session payloads (cf §4.2) are only internally created by the HTTP server code in bismon,
and cannot and should not be persisted.

134That is, json_t* from the Jansson library. It is practically useful for WebSocket messages.
135See also previous footnote 71 on page 21 for possible improvements of the GC.
136But the support threads, e.g. for web service with libonion, add complication to this scheme. However, ignoring conceptually

the call stacks don’t require us to use A-normal forms in module code, as was needed in GCC MELT, and facilitate thus the generation
of C code inside them.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 32 of 77

https://en.wikipedia.org/wiki/Frame_language
https://en.wikipedia.org/wiki/Semantic_network
https://en.wikipedia.org/wiki/Ontology_engineering


the BISMON static source code analyzer

• all the tasklets queued in the (several queues) of the agenda

• all the predefined objects

• all the constants (objects 137) referred by both hand-written and generated C code (including constants
referred by modules, and objects reifying modules).

• some very few global variables (containing values), so conceptually the idle queue of closures, and the
queue related to external running processes, the hash-set of active web request objects, etc.

The naive Bismon monitor garbage collection 138 works as follow: a queue of non-visited objects to be
scanned is maintained, with an hash-set of marked objects. Initially, we visit the GC roots above. Visiting
a value involves marking it (recursively for sequences, nodes, closures, ...) and if it is a newly marked object
absent from the hash-set, adding that object to the scan queue and to the hash set of marked objects, but nodes or
closures whose connective is an instance of transient_connective_object are ignored so transient.
We repeatedly extract objects to be scanned from the queue and visit their content (including their attributes,
their components, their signature and payload and the values inside that payload). When the scan queue is
empty, GC is finished.

2.3 persistence in Bismon

Persistence is an essential feature of the Bismon monitor, and did inspire the ongoing work in REFPERSYS. It
always starts by loading some previous persisted state, and usually dumps its current state before termination.
On the next run, that new state is loaded, etc.... For convenience and portability, the persistent state is a set of
textual files 139.

In the Internet world, persistence is generally handled outside of the application, by using databases. These
databases can be relational (see Date [2005]) or non-relational (so called NoSQL databases, see Raj [2018]).
Relational databases are often SQL based (cf. Date [2011]), so applications are using a relational database
management system (or server) such as POSTGRESQL 140 or MYSQL 141, etc etc... Databases are routinely
capable to deal with a very large amount of data (e.g. many terabytes or even petabytes), much more than the
available RAM, because the application using some database is explicitly fetching and updating only a tiny part
of it. Hence such persistence is not orthogonal.

Orthogonal persistence (see Dearle et al. [2010]) is defined in Wikipedia as : “Persistence is said to be
"orthogonal" or "transparent" when it is implemented as an intrinsic property of the execution environment of
a program. An orthogonal persistence environment does not require any specific actions by programs running
in it to retrieve or save their state.”.

Since the Bismon monitor deals only with the source code of some (perhaps large) IoT firmware and its
related internal representations, the total volume of data should easily fit inside the RAM of a high-end work-
station. For example, several millions lines of source code makes a large IoT firmware 142 but can be kept in
RAM. Hence Bismon favors a (nearly) orthogonal persistence. The only action required to keep its state is a full
dump of its entire persistent heap. An important insight is the similarity between the depth-first exploration
algorithm (see also Cormen et al. [2009]; Christian and Griffiths [2017]) used to dump a persistent state, and
classical copying or tracing garbage collection algorithms (such as Cheney [1970], or more recent generational
copying GCs, see Jones et al. [2016]).

The persistent state should be considered as precious and as valuable as source code of most software, so it
137The object of objid _1FEnnpEkGdI_5DAcVDL5XHG should be designed as BMK_1FEnnpEkGdI_5DAcVDL5XHG in hand-

written C code if it is not predefined, and a special utility collects all such names and generates a table of all these constants.
138Some previous experimentation with Boehm’s GC in multithreaded settings has been unsatisfactory.
139A gross analogy is the textual dump of some SQL database. That dump is the only way to reliably recover the database, so it should

be done frequently and the backed-up database.sql textual dump can be a large file of many gigabytes.
140See http://postgresql.org/ for more.
141See http://mysql.com/ and its close variant http://mariadb.org/ for more. Notice also that http://sqlite.org/ is a library

often used to embed a single, simple, relational database inside a program.
142Most of the firmware we heard of, even from CHARIOT partners, have less than several hundreds thousands lines of C or C++,

which expands to one or two millions Gimple statements. This should fit into one or a few dozens of gigabytes at most, even taking
into account that several variants of internal representations are kept.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 33 of 77

http://refpersys.org/
https://en.wikipedia.org/wiki/Persistence_(computer_science)#Orthogonal_or_transparent_persistence
https://en.wikipedia.org/wiki/Tracing_garbage_collection
http://postgresql.org/
http://mysql.com/
http://mariadb.org/
http://sqlite.org/


the BISMON static source code analyzer

should be backed-up and probably version-controlled 143 at every site using the Bismon monitor.
Notice that in Bismon only the heap is persisted, but “continuations” or “call stacks” or threads 144 are not

persisted 145 by themselves.

2.3.1 file organization of the persistent state

The persistent state contains both data and “code”. So it is made of the following files:

• data files store1.bmon, store2.bmon etc... Each such generated data file describes a (potentially
large) collection of persistent objects, and mentions also the modules required for them. There is one data
file per space, so store1.bmon is for the space#1 (containing predefined objects), store2.bmon is
for the space#2 (conventionally containing “global” objects useful on every instance of Bismon), etc...

• code files 146 contain the generated C code of persistent modules (in the modules/ sub-directory).
Since each module is (also) reified by an object representing (and generating) that module, the code
file paths contain objids. For example, our object _3BFt4NfJmZC_7iYi2dwM38B (it is tentatively
named first_misc_module, of class basiclo_dumpable_module) is emitting its C code in
the generated modules/modbm_3BFt4NfJmZC_7iYi2dwM38B.c file, so that code file is part of the
persistent state.

Ideally, in the future (after end of CHARIOT), the Bismon monitor should be entirely bootstapped 147, so all
its files should be generated (including what is still in 2018 the hand-coded “runtime” part of Bismon such as our
*_BM.c files, notably the load and dump machinery in load_BM.c and dump_BM.c, the agenda mechanism
in agenda_BM.c, miscellanous routines including the support of module loading in misc_BM.cc, etc,
etc...). However, we are still quite far from that ideal. Existing bootstrapped systems 148 such as CAIA (see
Pitrat [2000, 2009a,b], Pitrat [2013-2019]149, OCAML (cf Leroy et al. [2018]; Leroy [2000] and many other papers by
Xavier Leroy and the Gallium team at INRIA), CHICKEN/SCHEME150, SELF (cf Ungar and Smith [1987]), SBCL151 and
CLASP (cf Schafmeister [2015]) show that it is possible. The major advantage of generating all the code of Bismon would
be to deal with internal consistency in some automated and systematic way and facilitate refactoring 152. An important
insight is that the behavior of a bootstrapped system can be improved in two ways: the “source” of the code could be
improved (in the case of Bismon, all the objects describing some module) and the “generator” of the code could also be
improved (cf. partial evaluation and Futamura projections, e.g. Futamura [1999]; also, Pitrat [2009b, 2013-2019] gives
some interesting perspectives for artificial intelligence with such an approach).

143How and when the persistent state is dumped, backed up and version controlled is out of scope of this report. We strongly
recommend doing that frequently, at least several times every day and probably a few times each hour. If the Bismon monitor crashes,
you have lost everything since the latest dumped persistent store. The textual format of the persisted state should be friendly to most
version control systems and other utilities.

144The call stack is not formally known to the C11 or C++11 standard (and the optimizing C or C++ compiler[s] which optimize[s]
Bismon code is permitted to “mess it” during compilation of the Bismon runtime). Trying to reify and persist it some “portable” C or
C++ code is not reasonable, or would require some very implementation- and architecture- specific and tricky code. Even generated C
as a portable assembler don’t know about the call stack.

145Some data related to the agenda (cf. §1.7) might be persisted. Persisting continuations is however an interesting research topic (to
be worked out outside of CHARIOT).

146Conceptually, the dlopen-ed shared object files, such as our modubin/modbm_1zCsXG4OTPr_8PwkDAWr16S.so (which
corresponds to the emitted modules/modbm_3BFt4NfJmZC_7iYi2dwM38B.c code file) are not part of the persistent state. In
practice, these shared object files obviously need to be built before starting bismon, since it dlopen-s them at initial load time.

147This was not completely the case of GCC MELT, but almost: about 80% of GCC MELT at the end of that project was coded in
MELT itself. However, it was tied to a particular version of GCC.

148Observe that an entire Linux distribution is also, when considered as a single system of ten billions lines of source code, fully
bootstrapped. You could regenerate all of it. See http://www.linuxfromscratch.org/ for guidance.

149That blog explains that all the 500KLOC of the C code of CAIA and its persistent data are generated.
150Notice that semantically Bismon is quite close to Scheme and shares many features with that language; see

http://starynkevitch.net/Basile/guile-tutorial-1.html for more. The bootstrapped CHICKEN system is on
https://www.call-cc.org/ and is, like Bismon, translated to C.

151See http://sbcl.org/ for more
152In 2018, if we decide painfully to change the representation of attribute associations in objects, we have to modify a lot of hand-

written code and objects simultaneously, and that is a difficult and brittle effort of refactoring. If all our code was generated, it would
be still hard, but much less.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 34 of 77

http://gallium.inria.fr/
http://www.linuxfromscratch.org/
http://bootstrappingartificialintelligence.fr/WordPress3/
http://starynkevitch.net/Basile/caia-su-24feb2016.tar.bz2
http://starynkevitch.net/Basile/guile-tutorial-1.html
https://www.call-cc.org/
http://sbcl.org/


the BISMON static source code analyzer

2.3.2 persisting objects

Obviously, the objects of Bismon (§ 2.1.2) may have circular references, and circularity can only happen thru objects
(since other composite values such as nodes or sets are immutable, § 2.1.1). So the initial loader of the persistent state
proceeds in two passes. The first pass is creating all the persisted objects as empty and loads the modules needed by them,
and the second pass is filling these objects.

«_9oXtCgAbkqv_4y1xhhF5Nhz |=first_test_module|
!~ name (~ first_test_module ~)
˘ 1546366846.488
P _5bP4nozCTp0_1DPPTK398m1 |=basiclo_dumpable_module|
ÞÑ _3dmcFZldtxI_1bEIFl4jqe3 |=also|
% _5DDSY1YgVZr_6dOU4tiBldk ( { _6SSe2uyt8Cn_4QNhKM5hsDA _9O2lgu1TweO_0mVlpTwrBG1 })

ÞÑ _4rz1Bi4weGz_8Y03gU81cRL |=see|
{
_43Y25VLmh6s_3JRpERevcR4 _6SSe2uyt8Cn_4QNhKM5hsDA _9O2lgu1TweO_0mVlpTwrBG1 }
!# 3

è_43Y25VLmh6s_3JRpERevcR4

è_9O2lgu1TweO_0mVlpTwrBG1

è_0qxuQEfimtp_1Wp2YuKHsJ3
// emitted persistent module modbm_9oXtCgAbkqv_4y1xhhF5Nhz.c
»_9oXtCgAbkqv_4y1xhhF5Nhz

Figure 4: generated dump example: first_test_module in file store2.bmon

The figure 4 shows an example of the textual dump for some object (named first_test_module) of objid
_9oXtCgAbkqv_4y1xhhF5Nhz extracted from the data file store2.bmon.

The lines starting with « or !( and with » or !) are delimiting the object’s persistent representation. Com-
ments 153 can start with a bar | till the following bar, or with two slashes // till the end of line. !~ with
matching (~ ... ~) are for “modifications” (here, we set the name of that object to first_test_module).
Object payloads are also dumped in such “modification” form. !@ puts the mtime. !$ classobjid sets the
class to the object of objid classobjid. !: attrobj valattr put the attribute attrobj associated with the value
valattr. !# nbcomp reserve the spaces for nbcomp, and !& valcomp appends the value valcomp as a com-
ponent. The Σ or !| is for function signatures.
Within every dumped object, attributes whose class is temporary_attribute_object are not dumped.
This enables to mix both dumped attributes -as objects these attributes are not indirect instances of temporary_attribute_object154-
and non-dumped attributes in the same object.

value Ð int ; tagged integers
| float ; double precision floats
| __ ; nil
| "string" ; string with JSON-like escapes

| objid ; object of given objid

| { objidelem ... } ; set of elements of given objid

| [ objidcomp ... ] ; tuple of components of given objid

| * objidconn ( valueson ... ) ; node of given connective and son[s]

| % objidconn ( valueson ... ) ; closure of given connective and son[s]

Figure 5: syntax of values in dumped data files.

Data files start first with the objid of modules used by routines (in objects mentioned in that data file). These module-
objids are prefixed with !^ or with µ. Then the collection of objects (similar to figure 4 each) follows.

153Once the persistence code - loading and dumping of the state - is mature enough, we will disable generation of comments in data
files.

154That temporary_attribute_object class has objid _23vPTNrGYB.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 35 of 77



the BISMON static source code analyzer

In data files, objects are represented by their objid, perhaps followed by a useless comment like |this|. And im-
mutable values are in the grammar given in figure 5 (where __, representing nil, can also appear inside tuples, nodes,
closures but not within sets). The float-s are dumped 155 with best effort. At dump time, a transient object is replaced as
nil, so may be dumped as __. Within a set, it is skipped so ignored. When the connective of a node or of a closure is a
transient object, that node or closure is not dumped, but entirely replaced by nil so dumped as __.

The dump works, in a similar fashion of our naive GC, in two phases: a scanning phase to build the hash-set of all
dumped objects. A queue of objects to be scanned is also used. Then an emission phase is dumping them (one data
file per object space). A dumper transient object -of class dumper_object is made to reify the “global” dump status
(notably the queue of objects to scan, and the hash-set of dumped objects). So dumping happens by sending messages
with selectors -used by the dumping routine sending messages- like dump_scan, dump_value, dump_data. The
dump_scan message is sent156 to a scanned object having some payload during the scanning phase. The dump_value
message is sent157 is to dumped values during the emission phase. The dump_data message is sent158 when emitting an
object content -notably its payload - if relevant-, after having dumped its class, attributes and components. But attributes
which are direct or indirect instances of temporary_attribute_object are not dumped. Coupling databases with
graphical interfaces and GCC plugins have been achieved in Dean [2009].

155We don’t care about some IEEE-754 double-precision 64 bits floating point numbers not retaining all their significant bits between
dump and reload.

156The dumper object is the additional argument to dump_scan.
157Additional arguments to to dump_value are a string buffer object, the dumper object, and the depth as a tagged integer. Notice

that dumping of integers is implemented with the dump_value method of class int, dumping of tuples is implemented with the
dump_value method of class tuple, dumping of object references as objids is implemented with the dump_value method of
class object, etc....

158Extra arguments to dump_value are: the dumper object and the string buffer object.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 36 of 77



the BISMON static source code analyzer

3 Static analysis of source code in Bismon
Static analysis involves a generated GCC plugin (whose C++ code is generated by the bismon persistent monitor) which
communicates with the monitor and sends to it some digested form of the analyzed C or C++ code. Some translation-unit
specific processing can happen in that GCC plugin, but the whole program aspects of the static code analysis should
obviously be done inside the monitor, and requires -and justifies- its persistence. The complexity and non-stability of
GCC internal representations justify some semi-automatic approach in extracting them (see §3.1 below).

3.1 static analysis of GCC code
The GCC compiler has a complex (and ill-defined, under-documented and evolving, so unstable) application programming
interface (API) which can be used by plugins. So Bismon needs to analyze the various GCC plugin related header files
to extract important information about that API, so to be later able to generate GCC plugin code. Such an extraction
(inspired by the approach inside Clasp, which does similar things with the help of Clang, see Schafmeister [2015] for
details) needs not to care about the Gimple instructions, but only about the abstract syntax tree in Tree and Generic forms
(see GCC Community [2018] §11) to retrieve the full description of GCC.

This approach of extracting semi-automatically 159 the GCC API (of parsing GCC header files with some simple
GCC plugin) is motivated by past GCC MELT experience (where every feature of the GCC API had to be explicitly
and manually described in MELT language; these descriptions took a lot of time to be written and had to be manually
maintained; however, most of them could in theory be extracted automatically from GCC headers).

A bootstrapping and incremental approach, in several “steps”, is worthwhile (and possible because of persistence):
we will first extract some very simple information from GCC header files, and use them to improve the next extraction
from the same GCC header files. The slow evolution 160 of GCC API is practically relevant (most of the API of gcc-8.3
should stay in the next gcc-9.0 version).

Descriptive data related to the API of a particular version of GCC will thus stay persistently in the Bismon monitor,
but should be updated at each release of GCC. We care mostly about API related to optimization passes, GENERIC,
Gimple, SSA and Optimized-Gimple. We probably don’t need to go at the RTL level. The version 10 of GCC (released
in May 2020) incorporates several static analysis options, that are activated with the -fanalyzer option to g++ or
gcc. The version 10 of CLANG (released in March 2020) contains an improved Clang static analyzer and clang-
tidy “linter” like tool, check both coding styles and portability related conventions. Both compilers are open source
and available 161 on a LINUX desktop and both should be of interest for advanced IoT software developers coding in C
or in C++ and capable of using the command line. GCC analysis features be configured thru appropriate #pragma-s,
and CLANG analysis features are changeable by conventional comments such as // NOLINT(google-explicit-
constructor, google-runtime-int).

3.2 static analysis of IoT firmware or application code
Once the API of the current version of GCC is known to the persistent monitor, we can generate the C++ code of GCC
plugins for cross-compilers used by IoT developers.

A first static analysis, useful to IoT developers, will be related to whole-program detection of stack overflow (see also
Payer [2018]). By the way, such an analysis is currently not doable by Frama-C, because it don’t know the size of each
call frame. However, GCC is already computing that size (see the -fstack-usage option which dumps the size of
the call frame of each function, and the -Wframe-larger-than=bytesize option), and we simply need to extract
and keep it. We also need to get a good approximation of the control flow graph. For that we need to extract basic blocks
and just GIMPLE_CALL Gimple statements (ignoring other kinds of Gimple statements). Of course, indirect calls (thru
function pointers, which are infrequently used in most IoT code) are harder to handle (and could require interaction with
the IoT developer using our monitor, to annotate them).

A proof-of-concept GCC plugin for GCC 8 (and 9) to take advantage of existing internal GCC passes to com-
pute some upper approximation of the call stack size has been developped. That hand-written GCC plugin, coded in
file gcc8plugin-demo-chariot-2019Q2.cc of about a thousand lines of C++, communicate with the bismon
monitor using some REST HTTP protocol with ad-hoc HTTP POST requests having a JSON payload, in some CHARIOT
specific JSON format. The bismon monitor should display that diagnostic in a Web browser tab. It could also use the
language server protocol 162 which is, in 2019, understood by most free software source code editors running on Linux,

159We are well aware that some work still needs to be done manually, in particular giving the really useful subpart of the GCC API.
160GCC internals are slowly evolving, because GCC itself is huge: its “navigation” is as slow as that of a supertanker which needs

hours to turn and change directions. So for social reasons the GCC community is changing the API slowly, but there is no promise of
stability.

161Both recent GCC and CLANG are buildable as cross compiler for major 32 bits or 64 bits architectures such as PowerPC, x86, x86-
64, or ARM, provided one download their source code.

162See https://langserver.org/ for more.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 37 of 77

https://gcc.gnu.org/gcc-10/
https://gcc.gnu.org/onlinedocs/gcc/Static-Analyzer-Options.html
http://lists.llvm.org/pipermail/llvm-announce/2020-March/000087.html
https://clang-analyzer.llvm.org/
https://clang.llvm.org/extra/clang-tidy/
https://clang.llvm.org/extra/clang-tidy/
https://langserver.org/


the BISMON static source code analyzer

including emacs, or vim, or VSCode. It might even later use the new Sarif 163 protocol, designed for communication
between static source code analyser.

Notice that according to this webpage, nearly 70% of security bugs affecting the Chrome web browser (by Google)
are related to memory management issues in C++. It is expected that junior European software developers of non-critical
IoT systems would experiment a similar bug distribution in their IoT code. A long-term approach could be the costly
training of IoT software engineers to switch to programming languages with better memory management, such as Go
or Rust. However, rewriting an entire IoT code base is too costly, and mixing several programming languages164 in the
same software product can be worthwhile but requires some rare and qualified labor. GCC 10 has a new static analysis
framework (with its -fanalyzer compiler option) and powerful warning options165. The CLANG static analyzer could
be useful. Some coding rules (such as Holzmann [2006] or MISRA C) are available, but the Rice’s theorem forbids
the possibility of a sound and complete static analyzer: false alarms cannot be avoided, and code reviews by senior
programmers is still necessary.

We probably would also take as an example the analysis of some MQTT library. The insight is to trust some existing
MQTT implementation 166, and to help junior developers in using it, by checking simple coding rules relevant to MQTT.

An interesting CHARIOT-compatible approach could be to use topological data analysis (cf Chazal and Michel
[2017]) techniques, combined with some machine learning (cf Flach [2012]) and big data / data mining (cf Wu et al.
[2013]; Clarke [2016]; Zuboff [2015]; Helbing et al. [2019]) approaches, on some of the several directed graphs (notably
the control flow graph, the call graph, the dependency graph for example) of the whole analyzed program. Reputable
free software libraries167 are available on Linux. In principle, such an approach might be used in bismon for a semi-
automatic detection of code smells. Sadly, the lack of allocated human resources, and the strong focus (see Héder [2017])
on high TRL168 results, forbids even trying such an interesting approach in CHARIOT, taking into account that industrial
corporations are not even dreaming of it. However, these approaches might be tried in some other projects, perhaps
DECODER.

3.3 static analysis related to pointers and addresses

Pointers are an important part of the C11 and C++11 language specifications (see ISO [2011a,b]), but are difficult to
understand. They need several chapters169 in C or C++ textbooks such as Gustedt [2019]; Stroustrup [2014].
Practically speaking, a pointer is an address, with NULL (in C) or nullptr (in C++) having a special and
distinguished meaning: it is never the same as the result of the address-of operator (unary & prefix operator).

From the IoT or firmware developer’s point of view, pointers -viewed as addresses- may behave strangely
in practice, and differently from the language specifications: in theory, the NULL pointer might not sit at
address 0. In practice, IoT or firmware developers do know that (on most implementations) it is at address 0.
Dereferencing the NULL pointer is the prototypical example of undefined behavior, yet some firmware code170

may do that with good reasons. For example, some AVR microcontrollers (used in ARDUINO platforms “the
working registers are mapped in as the first 32 memory addresses” (from the AVR microcontrollers wikipage).
The MIPS architecture (used by some CHARIOT partners) has an instruction set without proper I/O ports (see
this), so input/output happens by accessing some dedicated memory locations: from the IoT programmer’s
point of view, physical I/O happens by writing into documented memory locations. The opensource RISC-V
architecture , used in IoT (see Lee et al. [2020]; Waterman [2016])) also has memory-based input/output, but
admit extensions with separate input/output ports.

Most IoT used operating system kernels (see Arpaci-Dusseau and Arpaci-Dusseau [2015], osdev.org)
such as the LINUX kernel (see also kernelnewbies.org and stackoverflow.com), FREEBSD and
FREERTOS are managing processes having each their own virtual address spaceand provide the virtual memory
abstraction, with some file systems to application code.

163See http://docs.oasis-open.org/sarif/sarif/v2.0/csprd01/sarif-v2.0-csprd01.html for more.
164See this for a discussion of why is that interesting. Notice that recent GCC compilers share some common internal representations

between several language front-ends.
165It is helpful to pass -Wall -Wextra to the gcc or g++ compiler, usually thru some build automation tool such as ninja
166Our purpose is not to prove the correctness of a given MQTT implementation, which would require a formal methods approach à

la VESSEDIA, but to help the developer using and trusting it, by checking some specific coding rules.
167See TENSORFLOW on https://www.tensorflow.org/, and GUDHI on http://gudhi.gforge.inria.fr/, and many other

similar libraries.
168Technical Readiness Level and the TRL wikipage for more.
169A novice programmer should be explained that after int tab[4]; int* p = &tab+1; both tab[2] and p[1] are pointer

aliases, but sizeof(tab) is not sizeof(p-1) even if tab == p-1.
170A typical example would be some BIOS or UEFI firmware or operating system kernel on most PC desktop motherboards, see

osdev.org and tinyvga.com for more

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 38 of 77

https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://golang.org/
https://www.rust-lang.org/
https://gcc.gnu.org/gcc-10
https://gcc.gnu.org/onlinedocs/gcc/Static-Analyzer-Options.html
https://clang-analyzer.llvm.org/
https://www.misra.org.uk/
https://en.wikipedia.org/wiki/Rice's_theorem
http://mqtt.org/
https://www.decoder-project.eu/
https://en.wikipedia.org/wiki/AVR_microcontrollers
https://arduino.cc/
https://en.wikipedia.org/wiki/AVR_microcontrollers
https://en.wikipedia.org/wiki/MIPS_architecture
https://www2.cs.duke.edu/courses/fall13/compsci250/MIPS32_QRC.pdf
https://riscv.org/
https://riscv.org/
https://osdev.org
http://kernel.org/
https://kernelnewbies.org
https://stackoverflow.com/
https://www.freebsd.org/
https://freertos.org/
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Virtual_address_space
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/File_system
http://docs.oasis-open.org/sarif/sarif/v2.0/csprd01/sarif-v2.0-csprd01.html
https://softwareengineering.stackexchange.com/questions/370135/why-are-multiple-programming-languages-used-in-the-development-of-one-product-or
http://gcc.gnu.org/
https://en.wikipedia.org/wiki/Build_automation
http://ninja-build.org/
https://www.tensorflow.org/
http://gudhi.gforge.inria.fr/
https://en.wikipedia.org/wiki/Technology_readiness_level
https://osdev.org/
http://tinyvga.com/


the BISMON static source code analyzer

In most C or C++ source programs, either in some freestanding environment (like operating system kernels,
low-end embedded software without any main, e.g. cheap ARDUINO-like devices) or in a hosted environment
(so using the standard C or C++ libraries and started thru their main function), for example some web server
running under LINUX on something similar to a RASPBERRYPI board), dynamically allocated memory is very
important in practice. See also Karvinen et al. [2014] and raspberrypi.org and arduino.cc websites.

In hosted environments, dynamic memory allocation often uses functions like malloc or its friends
calloc with realloc and free. On some operating systems, it could happen thru lower-level system
calls such as mmap or sbrk. Deallocation would use other system calls such as munmap.

Many freestanding environments provide more or less equivalent memory allocation facilities. For instance,
the FREERTOS kernel has in some cases a pvPortMalloc function with a behavior close to malloc, and
the the LINUX kernel uses kmalloc, with other deallocating functions close in behavior to free. But on
ARDUINO devices using malloc is indeed discouraged.

Dynamic memory allocation is often used but relevant for two important concerns: buffer overflows and
call stack management, including avoidance of stack overflow. Call stacks are needed for any multi-threading
or multi-tasking approach. Junior developers may easily write code that blows them up (e.g. with a too naive
recursion in C, or by having huge automatic variables). A rule of thumb is to avoid needing, in hosted environ-
ments, call stacks above a megabyte, or call frames bigger than a few kilobytes. With recent gcc compilers,
passing something like -Wstack-usage=2048 to the gcc compilation command is practically helpful.

Of course, call stacks are a scare resource, and even on Linux it is generally unreasonable to have many
thousands of them in the same process. This explains why thread-s are expensive, and why the PTHREAD func-
tion pthread_create (or C++11 std::thread-s) should be used with caution. See also pthreads(7),
nptl(7) and the source code of GNU GLIBC and of musl libc.

Depending on the development efforts (so costs) available and on the criticity of the IoT software, out
of memory conditions are handled differently. A lot of C code incorrectly assumes that malloc always171

succeed. In practice, this assumption is generally172 correct, so for non-critical IoT software173 it does have
some economical sense.

Most non-critical IoT software (e.g. inside consumer devices, perhaps RASPBERRYPI based, or wifi routers
based upon OPENWRT router software) won’t care about and won’t even handle (or even try to cleverly detect
and report) rare error conditions or failures such as :

• rare out of memory conditions (e.g. malloc failures)

• file system errors (e.g. fopen failure on some configuration file under /etc/), including I/O errors
(e.g. fscanf or fread failures) due to hardware failure (like malfunctioning USB storage keys).

• floating point precision issues. See the STANCE European project (grant 317753), the floating-
point-gui.de website, and Kiss et al. [2015]; Goubault and Putot [2011].

• losing time. See the time(7) man page for an interesting overview. A battery powered real-time clock
chip is cheap, but in most IoT consumer devices (typically routers or printers) it is not useful enough,
since they are often connected to some distant NTPD service

• synchronization bugs related to multi-threading or concurrent systems, e.g. with POSIX THREADS,
See Goubault and Haucourt [2005]; Sangiorgi and Walker [2003]; David et al. [2013]; Guerraoui and
Kuznetsov [2018]. Concurrency is also a concern of client-server architectures, including Web services
using HTTP , SMTP , IMAP (perhaps mixed with TLS ).

Pragmatically good reasons to avoid testing such error conditions include: 1. cost of additional development
efforts for extra C code which is difficult to test in a reproducible way without fault injections; 2. scarse code
memory space (e.g. in some read-only memory) on cheap devices.

Please notice that above error conditions are related: for example, a loss of time may corrupt an entire file
system, and timing information (or meta-data) is quite often kept and needed in small SQLITE databases. .

171See this joke-implementation of malloc, conforming to the letter but not the spirit of the C standard.
172On Linux, be aware of memory overcommit which could be disliked.
173As a consumer, I guess that most consumer rented Internet boxes - generally running some Linux - do have some system-wide

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 39 of 77

https://www.raspberrypi.org/
https://www.arduino.cc/
https://man7.org/linux/man-pages/man3/malloc.3.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/sbrk.2.html
https://man7.org/linux/man-pages/man2/munmap.2.html
http://www.jikos.cz/jikos/Kmalloc_Internals.html
https://arduino.stackexchange.com/q/682/12068
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Stack_overflow
https://computing.llnl.gov/tutorials/pthreads/
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://man7.org/linux/man-pages/man7/nptl.7.html
https://www.gnu.org/software/libc/
https://musl.libc.org/
https://en.wikipedia.org/wiki/Out_of_memory
https://en.wikipedia.org/wiki/Out_of_memory
https://openwrt.org/
http://www.stance-project.eu/
https://floating-point-gui.de/
https://floating-point-gui.de/
https://man7.org/linux/man-pages/man7/time.7.html
https://en.wikipedia.org/wiki/Real-time_clock
https://en.wikipedia.org/wiki/Ntpd
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://sqlite.org/
https://stackoverflow.com/a/8460584/841108
http://www.etalabs.net/overcommit.html
https://unix.stackexchange.com/q/441364/50557


the BISMON static source code analyzer

The remote backup of such small or large databases (see Date [2005]; Kornacker et al. [2015]) could happen
on a periodical basis (see crontab(5) and rsync(1) for more). Large relational databases are practically
needed for most machine learning algorithms (see Flach [2012]), which are usually concurrent programs. So
a non-critical machine-learning distributed IoT system would probably be made of cheap IoT devices com-
municating with some powerful, semi-centralized, database servers. Current meteorological computing grids
for numerical weather prediction operated by national meteorological services such as Météo-France require
such continent-wide IoT networks, and so does avalanche detection and forecasting in European mountains.
Smart cities networks and smart grids (see Belarbi [2004]; McLaren and Agyeman [2015]; Delons et al. [2008];
Bakken [2014] and the GRID4EU project) also need a large grid of many communicating IoT devices.

In some even critical IoT devices (e.g. medical devices such as a Covid-19 breathing ventilator), losing
power or time for a few seconds is acceptable, as long as there is some hardware alarm (e.g. electronic bell)
informing professional users (e.g. medical nurses).

Most non-critical IoT devices could sometimes access by the network a remote database , such as some
POSTGRESQL server, or some MONGODB document database. Losing the connection to such a remote
database is generally affordable, if the connection loss don’t last too long. On the other hand, a posteriori
adding database checkpoint facilities to some existing large long-running scientific code (think of oil indus-
try simulation software, or digital twins for automotive crash simulations, both running for months of super
computer time) requires some significant development efforts or code refactoring. Of course European par-
ticle accelerators such as CERN ELENA or LHC installations are deploying wide networks of heterogenous
IoT devices, but probably can afford partial failure of some of them. Cyber-attacks on smart grids (e.g. Lee
et al. [2016]) could justify an increase of European research funding on long-term mixed static analysis and
dynamic machine learning based techniques, but require funding of projects with a time span above three years
and involving tight cooperation thru open source projects (see Brooks [1995]; Lerner and Tirole [2000]; Tirole
[2018]; Hashem et al. [2015]). See also the related SOFTWAREHERITAGE project. See Brook’s law and ob-
servation -in 1975- that “while it takes one woman nine months to make one baby, "nine women can’t make a
baby in one month"” (to be scaled in 2020 by a factor of 10x and generalized to software developers of both
genders, given the complexity of current software intensive systems).

Notice that exact static prediction of call stack depth is in practice impossible, because of Rice’s theorem
-and usage in C code of the alloca(3) stack allocation primitive, or of variable-length arrays - and since
compilers may put automatic variables in processor registers. For C or C++ compilers handling the asm key-
word (in recent GCC compilers, it provides even powerful language extensions to C or C++), register allocation
becomes a nightmare for the compiler writer, since the register keyword tend to become obsolete or ill-
defined (like the volatile one). So it is strongly tied to the register allocation issue, which is a difficult
sub-problem inside most optimizing compilers (see Eisl et al. [2016]; Chaitin et al. [1981]; Aho et al. [2006]).
. In recent C++ language dialects, the auto and decltype keywords are enabling some type inference (see
Pierce [2002]; Stroustrup [2014, 2020]; ISO [2011b]). In practice, industrial compilers don’t even try to find the
best register allocation possible, but just a good enough one (otherwise compilation time could be prohibitive).
Be aware that flexible array members are also a C language feature, which, combined with pointer casts (or
equivalently used in union of pointers), permit compilers to do arbitrarily sophisticated optimizations.

memory leaks, and that observation could explain why rebooting them weekly improve the user experience.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 40 of 77

https://man7.org/linux/man-pages/man5/crontab.5.html
https://man7.org/linux/man-pages/man1/rsync.1.html
https://softwareengineering.stackexchange.com/a/332071/40065
https://en.wikipedia.org/wiki/Numerical_weather_prediction
http://meteofrance.com/
https://en.wikipedia.org/wiki/Smart_city
https://en.wikipedia.org/wiki/Smart_grid
https://www.enedis.fr/grid4eu
https://github.com/Recovid/
https://www.postgresql.org/
https://www.mongodb.com/
https://home.cern/science/accelerators/
https://www.softwareheritage.org/
https://en.wikipedia.org/wiki/Brooks's_law
https://en.wikipedia.org/wiki/Rice's_theorem
https://man7.org/linux/man-pages/man3/alloca.3.html
https://en.wikipedia.org/wiki/Variable-length_array
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://en.wikipedia.org/wiki/Register_allocation
https://en.wikipedia.org/wiki/Flexible_array_member


the BISMON static source code analyzer

4 Using Bismon

This section §4 should become somehow a user manual, and will be written for the final D1.3v2. It is both for
the ordinary IoT developer just using bismon for static analysis of IoT source code, and for the static analysis
expert configuring and programming it.

Most of that should be generated from data persisted inside bismon. Perhaps should be exchanged with the
“static analysis” chapter (§3).

4.1 How JSON is used by Bismon

The JSON174 textual format is a convenient, common and compact structured textual format. It is used in Bis-
mon, in particular because of its web interface, and supported as a payload (but not directly175 as an immutable
value) for objects of class json_object.

Conceptually, the JSON model is close, but not identical to, the Bismon persistent model: it provides
structured and compositional constructs, but JSON objects have strings as attributes, while Bismon objects
have arbitrary object references as attributes, and also components and some optional payload.

4.1.1 The canonical JSON encoding of Bismon values

Therefore, there is some way to encode any Bismon value into a JSON value; this is the canonical JSON
encoding of values, given in table 11 below.

JnilKjson Ñ null The Bismon nil is encoded as the JSON null
JunspecifiedKjson Ñ false The Bismon unspecified is encoded as the JSON

false
Jinteger iKjson Ñ i (JSON integer) tagged integers encoded as is
Jboxed float fKjson Ñ f (JSON float) boxed doubles encoded as is, with decimal point
Jstring sKjson Ñ s (JSON string) Bismon strings encoded as is

Jobject ω of objid oidKjson Ñ { "!oid" : oid } Bismon objects encoded with "!oid" JSON
attribute giving the objid as a JSON string

Jtuple rω1 . . . ωns Kjson Ñ
{ "!tup" :

[ oid1 . . . oidn ] }
Bismon tuples encoded with "!tup" JSON at-
tribute giving the JSON array of corresponding
objid JSON strings : oidi “ objidpωiq

Jset tω1 . . . ωnu Kjson Ñ
{ "!set" :

[ oid1 . . . oidn ] }
Bismon sets encoded with "!set" JSON at-
tribute giving the JSON array of corresponding
objid JSON strings : oidi “ objidpωiq

Jnode * ωconnpσ1 . . . σnq Kjson Ñ

{ "!node" : oidconn ,
"!sons" :
[ Jσ1Kjson . . . JσnKjson ] }

Bismon nodes encoded with "!node" JSON
attribute giving the objid oidconn “

objidpωconnq of the connective oidconn,
and with "!sons" JSON attribute associated
to the array of encodings of that node’s sons σi

Jclosure % ωroutpκ1 . . . κnq Kjson Ñ

{ "!clos" : oidrout ,
"!cval" :
[ Jκ1Kjson . . . JκnKjson ] }

Bismon closures encoded with "!clos"

JSON attribute giving the objid oidrout “

objidpωconnq of the closure’s routine, and
with "!cval" JSON attribute associated to the
array of encodings of that closure’s closed val-
ues κi

Table 11: canonical JSON encoding JvKjson of a Bismon value v.

The canonical JSON encoding is implemented176 as the canonjsonifyvalue_BM function.

174See http://json.org/ for more
175Adding immutable JSON values as a new kind of Bismon value could be considered in the future.
176Coded in C, in file jsonjansson_BM.c

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 41 of 77

http://json.org/
https://github.com/bstarynk/bismon/blob/master/jsonjansson_BM.c


the BISMON static source code analyzer

4.1.2 The nodal JSON decoding into Bismon values

Since JSON is a structured and compositional, tree-like, representation, and because nodes are the only kind
of structured immutable Bismon values, any JSON value can obviously be decoded into a Bismon values,
using mostly nodes for structuring data, following the rules listed in table 12 below. Actually, there are
several variants of nodal decodings, depending on how JSON strings looking like full objids (e.g. JSON
"_756o00yB7Zs_1USbaS25hxl"), or abbreviated objids (e.g. JSON "_9Z2BgJbf4"), or named ob-
jects (e.g. JSON "arguments", related to Bismon object arguments, i.e. _0jFqaPPHg) are really
decoded.

xnully
nod

Ñ json_null The JSON null is nodal-decoded as the
json_null Bismon object _6WOSg1mpN

xfalsey
nod

Ñ json_false The JSON false is nodal-decoded as the
json_false Bismon object _1h1MMlmQi

xtruey
nod

Ñ json_true The JSON true is nodal-decoded as the
json_true Bismon object _0ekuRPtKaI

xinteger ιynod
Ñ tagged integer ι The JSON integers are nodal-decoded as the cor-

responding Bismon integer
xreal δy

nod
Ñ boxed double δ The JSON reals are nodal-decoded as the corre-

sponding Bismon boxed double

xobjid-looking string σy
nod

Ñ

object ω, when ω R tjson_null,
json_false, json_true,
json_array, json_objectu

an objid-looking string σ, starting with an under-
score _ and matching the objid of an existing ob-
ject, may be nodal-decoded as the existing anony-
mous object ω such as objidpωq “ σ when that
ω is not a special object mentioned here.

xname-looking string σy
nod

Ñ

object ω, with ω R tjson_null,
json_false, json_true,
json_array, json_objectu

a name-looking string σ, starting with a letter
and naming an existing object, may be nodal-
decoded as the existing named object ω such as
namepωq “ σ when that object is not special.

xany string σy
nod

Ñ Bismon string σ a string σ would otherwise be nodal-decoded as is
into the same Bismon string σ

x[ js1, . . . jsn]ynod
Ñ

*json_array
px js1y

nod . . . x jsny
nod

q
A JSON array is compositionally nodal-decoded
into a node of connective json_array and sons
given by nodal-decoding the components of that
array

x{α1: js1, . . . αn: jsn}y
nod

Ñ

*json_objectp

*json_entrypxα1y
nod,

x js1y
nod

q

...
*json_entrypxαny

nod,
x jsny

nod
q

q

A JSON object is compositionally nodal-decoded
into a node of connective json_objects and
sons given by json_entries subnodes whose
first son is a string αi or object ωi or node

* idpωiq where αi “ objidpωiq or node

* namepωiq where αi “ objnamepωiq

Table 12: nodal JSON decoding xjsynod of a JSON value js .

177Our JSON extraction is inspired by some pattern matching constructs on linear patterns with semi-unification.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 42 of 77



the BISMON static source code analyzer

extractor node success condition side effects and explanation
* json_null () js ” null succeeds when js is the null JSON
* json_false () js ” false succeeds when js is the false JSON
* json_true () js ” true succeeds when js is the true JSON
* int (vint) js ” some JSON integer i succeeds when js is a JSON integer i, and assign

to integer variable v its integral value v Ð i

* double_float (vval) js ” some JSON real δ succeeds when js is a JSON real δ, and assign
to double variable v its boxed double value v Ð

boxed-doublepδq

* string (vval) js ” some JSON string σ succeeds when js is a JSON string σ, and as-
sign to value variable v its boxed string value
v Ð boxed-stringpσq

* id (vobj) js ” some JSON string σ
^ D object ω, objidpωq “ σ

succeeds when js is some JSON string σ looking
like an objid, and that string σ is the objid of some
existing object ω, then assign to object variable v
that object ω, so v Ð ω

* name (vobj) js ” some JSON string σ
^ D object ω, objnamepωq “ σ

succeeds when js is some JSON string σ looking
like a name, and that string σ is the objname of
some existing object ω, then assign to object vari-
able v that named object ω, so v Ð ω

* member (xval vobj)
with x being
some Bismon set

js ” some JSON string σ
^ D object ω P x,

pobjnamepωq “ σ
_objidpωq “ σq

succeeds when js is some JSON string σ looking
like a name or an id, and that string σ is the obj-
name or objid of some existing object ω member
of set x, then assign to object variable v that object
ω, so v Ð ω

* put (ω) always succeeds then put in that given Bismon object ω a JSON
payload with js inside

Notation:
The χ, χ1, χi... are extractors; the js, js 1, jsi... are JSON values; χ Ź js means that the extraction using extractor χ on
JSON js was successful; the v, v1, v2, vi, w,... are Bismon local variables whose type is explained with blue annotations
like val; the x, y... are Bismon values, the ω,... are Bismon objects.

Table 13: simple extraction from some JSON thing js; (see also table 14 below.)

4.1.3 JSON extraction with extract_json

A Bismon statement of class basiclo_extractjsonstmt, obtained with the ˆextract_json ( ob-
json extractornode sub-statements... ) readmacro, so having the attributes json_object : objson and
extract_json : extractornode, can extract data from the JSON in a payload (of some object objson, usu-
ally of class json_object). That extraction177 is driven by the given extractornode in the statement, which
should be a node, as explained in tables 13 (for simple extractions) and 14 (for more complex extractions)
below.

Such a JSON extraction is compositional, has side-effects (e.g. could set local variables), and could fail.
When the extraction has succeeded, the given sub-statements... are executed (they are the components of that
JSON extraction statement). No backtracking occurs during extraction.

For example, a JSON thing178 like { "do": "foo" , "obj" : "_3d9rq9TD6PH_6qUv4Hao767", "targets"

: [ "_3dmcFZldtxI_1bEIFl4jqe3", "_6vMEdC0qxdp_7shHwvOZEQx" ] } could be extracted with the com-
posite extractor *json_object(*json_entry("do" *string(v_str)) *json_entry("obj" *id(o_comp))

*json_entry("targets" *set(v_set))) successfully extracting the value variable v_str assigned (as a
side effect) to the boxed string "foo", the object variable o_comp assigned to object _3d9rq9TD (that is,
the object named a_to_c) and the value variable v_set assigned to set { _3dmcFZldt _6vMEdC0qxd
} that is to {also and}.

178We may call JSON things what the JSON standard call JSON values; and that example could be inside some AJAX or REST POST
HTTP request.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 43 of 77



the BISMON static source code analyzer

extractor node success condition side effects and explanation
* set (vval) js ” some JSON array

[ js1, . . . jsn ] of strings, so
js1 “ string σ1 ^

. . . ^ jsn “ string σn

^ @i, D object ωi,
p objnamepωiq “ σi

_ objidpωiq “ σi q

succeeds when js is some JSON array of JSON
strings jsi “ string σi, then builds a Bismon set
of existing objects vset “ t. . . ωi . . .u from these,
with σi Ñ ωi such that objnamepωiq “ σi or
objidpωiq “ σi

* json_array (χ1 . . . χn) js ” some JSON array
[ js1, . . . jsn ]

^ χ1 Ź js1 ^ . . . χn Ź jsn

succeeds when js is a JSON array of exactly n ele-
ments : js1, . . . jsn, and extracts them in sequence,
using χ1 on js1, then χ2 on js2, etc... and at last
χn on jsn

* json_entry (α χ) js ” some JSON object having
Di, { . . . α : jsi . . . } ^χŹ jsi

succeeds when js is a JSON object having an at-
tribute string α associated to some JSON value jsi
which can be extracted using χ.

* json_entry_object (ω χ) js ” some JSON object having
D some Bismon object ω
D some JSON string α,
pobjidpωq “ α _ objnamepωq “ αq

Di, { . . . α : jsi . . . } ^ χ Ź jsi

succeeds when js is a JSON object having an at-
tribute string α which is the name or objid of the
given Bismon object ω, associated to some JSON
value jsi which can be extracted using χ.

* json_object (χ1 . . . χn) js ” some JSON object of length
exactly n such that

χ1 Ź js ^ . . . ^ χn Ź js

succeeds when js is a JSON object of exactly n
members : { α1 : js1, . . . αn : jsn }, and
that same object js can be extracted by each of
the χ1 . . . χn in sequence; the sub-extractors χi

are often but not always of form * json_entry
(αi χ1

i), . . . .

* json_value (vval) always succeeds assign v Ð xjsy
nod to value variable v the nodal-

encoding of js

* value (vval) Dx Bismon value, js ” JxKjson succeeds when js is the minimal canonical encod-
ing of some value x; then assign v Ð x to value
variable v that Bismon value x

* when (ε stmt1 . . . stmtn) The testing expression ε evaluates
as true (non-nil value, or non-zero
integer)

succeeds when expression ε is true (it usually in-
volves some variables computed by previous ex-
tractors), then executes in sequence the statements
stmt1 . . . stmtn for their side effects

* and_then (χ1 . . . χnq sequentially and lazily
p χ1 Ź js ^

...
^ χn Ź js q

succeeds when the same js can be successfully ex-
tracted by each of the χ1 . . .χn in sequence from
left to right (failing lazily as soon as some χj fails),
and combine their side effects (visible from χj to
the next χj`1).

* or_else (χ1 . . . χnq sequentially and lazily
p χ1 Ź js _

...
_ χn Ź js q

succeeds as soon as the same js can be success-
fully extracted -from left to right- by some of the χi

(continuing lazily to the next χi`1 when it fails),
and combine their side effects (visible from χj to
the next χj`1).

Notation: Share notation with table 13 above. In addition, the ε are Bismon expressions. The α are JSON strings in attribute
position. The σ are strings (usually JSON strings). The stmt are Bismon statements.

Table 14: complex extraction from some JSON thing js; (see also table 13 above.)

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 44 of 77



the BISMON static source code analyzer

4.2 Web interface internal design

The Web interface of bismon is supposed to be used without malice (see §1.4.3 and §1.6.1), with a recent
graphical web browser 179 using HTTP/1.1. In particular, bismon does not take any measure against denial-
of-service attacks, since it is supposed to be used on a trusted and friendly corporate intranet or local area
network, not directly on the wild Internet. The network administrator running bismon could deploy usual
relevant techniques (firewalls, iptables, HTTP proxying, DMZ, etc ...) to avoid such attacks. In practice,
there are few web browsers - so few HTTP clients - interacting with bismon simultaneously : only a dozen of
people in some IoT development team, and each uses his/her graphical browser - a recent Firefox or Chrome 180.
Compatibility with other browsers181 is not yet a concern, given the low TRL ambitioned. Each Bismon user is
expected to have one, or only a few, browser tab[s] interacting with the bismon server, and these tabs, if there
are more than one, are handled as different web browsers so have different web sessions. They are physically
and geographically located on the same local area network as the machine running the bismon monitor. So,
from web technologies perspective, bismon is making different trade-offs 182 than “traditional” web servers or
web applications : the web browser Ø bismon web server round-trip transmission time is supposed to be very
small so frequent AJAX requests are possible, the bandwidth is expected to be quite large so voluminous HTTP
responses are acceptable, the number of simultaneous web connections or of web sessions is tiny. Therefore
most web optimizations are practically unneeded.

With its initial (and current, in mid-2019) naive stop-the-world garbage collector, the interactive perfor-
mance and user experience (i.e. user look-and-feel) of Bismon is expected to be unsatisfactory (since that
GC could “block” the bismon monitor and web service for more than half a second - during which the web
interface stays unresponsive, if running the GC on a large enough heap; but see footnote 71 suggesting an
improvement). With significant work, that could be improved.

Each HTTP request either corresponds to a “static” file path under webroot/ (for a GET or HEAD HTTP
request) or else it is handled dynamically. For a static file path, that file is served directly by the routine
onion_handler_export_local_new with a Content-Type corresponding to its suffix; for example
an HTTP GET request of favicon.ico is answered with the content of webroot/favicon.ico file, and
an HTTP GET request of jscript/jquery.js is served by the content of webroot/jscript/jscript.js.
Care is taken 183 to avoid serving any static file outside of webroot/. So the webroot/ directory contains
static content such as images, external JavaScript libraries, CSS stylesheets, etc... Static content requests are
always handled the same, so they work even without any cookies.

Any HTTP request which cannot be handled as a static resource like above, because it has no corresponding
file under webroot/, is considered as a request for dynamic content and is called a dynamic request. Dynamic
content requires a web session cookie named BISMONCOOKIE which contains 184 a cryptographic quality
hash (in practice unforgeable) and mentions the objid (cf §2.1.2) of some web session object. If there is no
cookie, or if the cookie is invalid or wrong (e.g. forged), a login form is returned. So any HTTP request for
a dynamic content (that is which is not handled as a static resource like above) is rejected (with HTTP status
403 Forbidden) if the user (a contributor in bismon parlance, cf. §1.6.3) is not logged in.

Dynamic requests are reified as very temporary bismon objects of class webexchange_object. Their
179Such as Firefox 60.7 or later, or Google Chrome 75.0 or later, both exist in 2019Q2.
180So no particular effort is even taken to support a variety of old browsers: we don’t have any code to e.g. support Internet Explorer

pecularities or deficiencies. Likewise, scalability to thousands of simultaneous HTTP connections is out of scope in bismon, but it is
essential in most web applications.

181See https://caniuse.com/ and https://developer.mozilla.org/ and elsewhere for the many subtle but present
compatibility issues of current Web technologies, and notably https://stackoverflow.com/q/33540051/841108 or
https://softwareengineering.stackexchange.com/q/393837/40065 for some tricky questions directly relevant to our Bismon
development.

182For example, we could accept making some HTTP exchange - e.g. with AJAX - on every keystroke on the keyboard, but such
practice won’t be acceptable in usual web services. Also, we don’t care much about minimizing the HTTP exchanges - no “minification”
needed in practice!

183In particular, any HTTP request containing .. is rejected.
184A practical example of BISMONCOOKIE value might be n000041R970099188t330716425o_6IHYL1fOROi_58xJPnBLCTe:

41 is the serial number counting web sessions in the running bismon process, 970099188 and 330716425 are two random numbers,
_6IHYL1fOROi_58xJPnBLCTe is the randomly-generated objid of the web session object.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 45 of 77

https://caniuse.com/
https://developer.mozilla.org/
https://stackoverflow.com/q/33540051/841108
https://softwareengineering.stackexchange.com/q/393837/40065


the BISMON static source code analyzer

web exchange payload 185 contains not only a string buffer 186, to be filled with the HTTP response content,
but also mentions the web request (as processed by libonion) and the web session object computed from the
BISMONCOOKIE and may contain some arbitrary data value. The web exchange object is supposed to be filled
-like string buffers are- and at last given some integer HTTP status and immediately sent back to the browser.
Their web session object is created at web login time and is of class websession_object 187. It knows
the contributor who is logged in, the expiration time of the session, some session data (an arbitrary bismon
value; of course more data can sit in attributes or in components of that web session object), and the web socket
connection (if any) to the browser using that session. The session storage 188 associated to key "bismontab"
identifies and gives the tab number in the browser. An inactive web session expires in about an hour 189.

Of course, web request objects or web session objects are transient and are not and should not be persisted
at dump time (cf. §2.3). So after each restart of the bismon monitor, its web users (i.e. contributors) should
login again.

A dynamic request is handled by some closure and should be answered in a couple 190 of seconds; otherwise
a web timeout occurs. That web handler closure is applied to the remaining URL path string and to the web
exchange object created in the libonion-specific thread dealing with the HTTP request, so outside of the
agenda machinery (cf §1.7), and usually would add some tasklet into the agenda. Most of the time, a fraction
of a second later, some other tasklet would complete the filling the web request object and give some HTTP
status code such as 200 OK, then an HTTP reply is sent back to the browser. If a timeout occurs because the
web request object has not been taken care of quickly enough, an HTTP 500 Internal Server Error
is given back to the browser and that web request object is cleared.

The mapping between URL paths (or prefixes) and web handler closures handling dynamic requests for
them is given by the webdict_root191 dictionnary predefined object of class webhandler_dict_object;
for an empty path in the URL (such as http://localhost:8086/ for example), its web_empty_handler
attribute is 192 used. If finally no web handler closure is found, an 404 Not found status is returned. The
the_web_sessions predefined object stores the dictionnary of transient web session objects and associates
a cookie string to its web session object. That dictionnary is forcibly cleared at start of the web server inside
bismon, but it should be loaded empty, since web session objects are created and should remain transient. A
class temporary_webhandler_dict_object, sub-class of the webhandler_dict_object class,
also exists and have transient dictionnary entries which are not dumped.

In practice, dynamic requests are usually generating the HTML5 content very dynamically. For generated
HTML, it is much easier to produce XHTML5, the XML variant of HTML5, because its textual syntax is 193

much more regular and easier to generate than with plain HTML5.
The webxhtml_module in bismon has code to ease the emission of XHTML5. And XHTML5 fragments

are emitted by the emit_xhtml routine object 194. That emit_xhtml, which get as arguments: the value
185There is no programmatic way to create such a web exchange payload. It can only be created by processing such dynamic HTTP

requests.
186Since a string buffer should contain valid UTF-8 string content without nul bytes, this restriction forbids binary contents in HTTP

replies to dynamic requests. Hence, dynamically computed image contents are not possible, unless they use a textual format like SVG.
187So the only way to create a web session payload is thru the login form. There is no programmatic way to create it.
188See https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage for more.
189See the USER_WEBSESSION_EXPIRATION_DELAY constant in web_ONIONBM.c
190See the WEBEXCHANGE_DELAY_BM constant in file web_ONIONBM.c ...
191For example: an URL like http://localhost:8086/show/status is handled by some bismon monitor listening HTTP

requests on port 8086 and with webdict_root associating the string "show" to some closure κ, that web handler closure κ
would be applied to the suffix string "status" and to the web exchange object ω created for that HTTP request. The result of that
application is ignored, only side effects -often adding some tasklets into the agenda, and/or filling the web exchange object with some
XHTML5, etc...- are useful. If the string in such a web handling dictionnary wdict is associated to some other object ωwh of class
webhandler_dict_object, that dictionnary object ωwh is recursively explored with the rest of that URL path (e.g. "status"
in our example). If wdict has some and_then attribute associated to an object ωandthen which is a web dictionnary object, that
ωandthen is explored with an incremented depth.

192Since dictionnary objects map non-empty strings to non-nil values (cf. §2.1.2).
193For instance, within a <script HTML5 element containing JavaScript, it is not even allowed in HTML5 to have if (x &lt;

5) even if ordinary HTML rules suggest to use &lt; instead of < in textual content... That makes compositional generation of mixture
of HTML and JavaScript emitting HTML much harder.

194So that emit_xhtml is, like PHP, a machinery to emit arbitrary XHTML. However, we want to avoid thinking -like PHP was
originally designed- in terms of emitting a stream of characters, and emit_xhtml is supposed to emit structured XHTML from some
structured, tree-like, internal representation. That internal representation is a DAG (directed acyclic graph).

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 46 of 77

https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage


the BISMON static source code analyzer

v_html to emit; an arbitrary web context object o_emitctx which might be in simple cases just some web
session object; a string buffer object o_strbuf which is often the web exchange object; the tagged integer
recursion depth v_depth, which is in general not 195 the emitted indentation. When the string buffer is too full
or the recursion depth is too deep, that emit_xhtml fails. When the emitted HTML-reifying value v_html
is nil, nothing happens. When it is a scalar, it is emitted trivially: a string is emitted HTML-encoded (so &lt;
for <, etc...); a tagged integer is emitted in decimal notation; When v_html is an object ωhtml, it is emitted
per the following rules:

• the newline object emits an indented newline.

• the nlsp object emits a newline when the current line is long enough, or else a space.

• the space object emits a space character.

• instances of html_void_element_object emit some void element like e.g. <hr class=’foo’/>
using the _0FRLxSGQlZ routine. The emit_xhtml_open selector should emit -as a side effect- the
opening tag <hr class=’foo’ without the ending />, and returns the string naming the tag, e.g.
"hr".

• instances of html_element_object emit recursively using _5NH940lCHYJ some nested XHTML
element starting with a start tag like <div but ending with an end tag like </div>; the components
of that objects are emitted recursively (with an incremented recursion depth). The spacing style is first
determined by sending html_spacing with the o_emitctx and the depth. It can be newline for
indented, newline separated, content; or nlsp for space or newline separated, unindented content; or
space for space separated content; any other spacing style -notably nil- don’t emit any separators in
the content. The start tag is emitted with emit_xhtml_open returning the tag string like before (e.g.
"span" for a <span class=’somecl’ emission, then > is output to end the opening tag, then the
components, then the end tag is emitted, using the returned tag string from emit_xhtml_open.

• instances of html_sequence_object emit recursively their components but without surrounding
tags.

• instances of html_active_object emit recursively HTML stuff thru a message of selector emit_xhtml
sent to them.

• any other object is emitted by its name, if it has some, or by its objid. This is mostly intended to represent
common repeated names or words by a single and shared object.

When v_html is a node of connective ωconn, it is emitted per the following rules:

• if ωconn is one of int, hexa, octa and v_html is an unary node with a integer son n, that integer n
is emitted in decimal, hexadecimal, octal respectively.

• if ωconn is id 196 and v_html is an unary node with an object son ωson its objid is emitted.

• if ωconn is buffer and v_html is an unary node with an object son ωson which has a string buffer
payload, that string is emitted HTML-encoded.

• if ωconn is object and v_html is an unary node with an object son ωson its name or objid is emitted.

• if ωconn is name and v_html is an unary node with an object son ωson its name is emitted, and when
ωson is not a named object, we have a failure. If ωconn is name and v_html is an binary node with an
object first son ωson, and some arbirary non-nil second son ε its name is emitted, and when ωson is not a
named object, the ε is recursively emitted

195In very simple cases, without closures or sequences in the DAG of emitted values, the depth could be the depth of XHTML
elements, so could be the indentation. In general, it is not.

196So nodes of connective id, object or name can be used to emit objects of class html_void_element_object,
html_element_object, html_sequence_object, html_active_object which would be handled specially otherwise.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 47 of 77



the BISMON static source code analyzer

• if ωconn is sequence, every son of v_html is emitted in sequence, with an incremented depth. Noth-
ing is additionally emitted between them.

• if ωconn is space, or newline, or nlsp, every son of v_html is emitted in sequence, with an in-
cremented depth. Between each son, a space (respectively, a newline, or a smart space of newline) is
emitted.

• for any other object ωconn as connective, we extract its emit_xhtml_node attribute vemit node and its
emit_xhtml_connective_open attribute vemit open. Only one of them should be present (non-nil
value) and it should be a closure. If vemit node is given, it is applied to ωconn o_emitctx o_strbuf
depth ` 1 v_html, else if vemit open is present, we apply it (like the emit_xhtml_open selector
above) to ωconn o_emitctx o_strbuf depth ` 1 v_html to obtain an XHTML element tag. We
also extract and use its html_spacing attribute. Then proceed like for html_element_object
using the sons as components....

• @@ to be completed a lot.

When v_html is a closure, it is applied @@ to be completed and the result of that application is recursively
emitted. When v_html is a sequence (set or tuple), its components are emitted recursively.

If no rule is applicable, emit_xhtml fails.

The web session objects are also used for WebSockets with the following additional conventions. The
bismon server uses WebSockets only for asynchronous communication from that bismon server to Web
browsers 197. The WebSocket messages from bismon to web browsers are arbitrary JSON values.

The syntax-oriented editor (inspired by MENTOR: Donzeau-Gouge et al. [1980]) needed198 in Bismon by
its homoiconicity , and used by the static analysis expert, won’t handle lines of tokens in an editor widget199,
but should enable that expert user to enter and conveniently manipulate the abstract syntax tree (or AST) of
our Bismon DSL. That AST should appear in the web browser as some “graphical” tree (e.g. displayed as
SVG elements or in some Canvas element) and/or more probably as nested, but with visible borders, HTML5
markup elements updated thru the DOM. AST manipulation should be easy, e.g. using contextual menus and/or
keyboard function keys like F1 , F2 and/or control keyboard sequences -with e.g. the Ctrl or Esc keys-
inspired by those of emacs or vim, etc... The set of elementary AST user-doable manipulations -including
copy and pasting of AST sub-trees- should be carefully designed, but small. The design insight could represent
these ASTs both in user’s browser as DOM elements and inside Bismon as AST transient objects and/or nodes.

4.3 Using bismon for CHARIOT

To run the bismon monitor for CHARIOT related activities, that monitor should initialize its state for these
activities. So you need to pass -i init_chariotdemo as a program argument when running bismon in
that case.

197So web browsers don’t communicate asynchronously with the bismon server. For such communications from browser to
bismon, Web browser always use synchronous HTTP requests, e.g. using AJAX techniques.

198See also end of 1.6.1 above, and also https://stackoverflow.com/a/47116008/841108 for more.
199Of course, using https://codemirror.net/ will be useful to show analysed C or C++ source code, but not for our Bismon’s DSL.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 48 of 77

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/Canvas_element
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/Document_Object_Model
https://stackoverflow.com/a/47116008/841108
https://codemirror.net/


the BISMON static source code analyzer

5 Miscellanous work

5.1 Contributions to other free software projects

This is related to subtask ST1.3.2 of CHARIOT GA.

5.1.1 Aborted contribution to libonion

The libonion library is a free software HTTP server library (LGPLv3 licensed) that is used in bismon for
its web service feature. See its web site https://www.coralbits.com/libonion/ for a description, and its
source repository https://github.com/davidmoreno/onion for more.

The handling of SIGTERM signal (and others) is deemed unsatifactory. See the opened issue 229 (on

https://github.com/davidmoreno/onion/issues/229) in libonion. We discussed that issue on google group with
the libonion community, and came to a disagreement (our design was considered too complex, but we believe
that such a complexity is needed to avoid bugs in the rare cases of a multi “onion” application, which bismon
is not).

Independently of that issue, we improved our bismon to avoid needing or depending on that SIGTERM
feature in libonion (by using signalfd Linux specific facilities in bismon itself and passing the O_NO_SIGTERM
flag to onion_new...).

So the effort on improving SIGTERM handling in libonion was concluded.

5.1.2 Contribution to GCC

There is no contribution yet to GCC, because it is not yet needed in october 2018. We reserve some effort for
future such contributions, when our GCC plugin generator would require them. In the lucky case where no
adaptation of GCC plugin infrastructure is necessary, the effort could be moved to other work in T1.3 (notably
ST1.3.3).

5.2 Design and implementation of the compiler and linker extension

This is related to subtask ST1.3.4 (and also ST1.3.1) of CHARIOT GA
The compiler extensions will be generated GCC plugins.
The linker extension will compute some “cryptographic quality” hash code of the C or C++ translation units

of the IoT software. Then it will interact with the blockchain, according to the §6 API for Private key related
transactions of the D1.2 Method for coupling preprogrammed private keys on IoT devices with a Blockchain
system. That API is a Web API and a C or C++ compatible plain API or library should be developed, following
the tutorial code example of D1.2.

This chapter will be updated and completed in the upcoming and final version (in D1.3 v2).

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 49 of 77

https://www.coralbits.com/libonion/
https://github.com/davidmoreno/onion
https://github.com/davidmoreno/onion/issues/229


the BISMON static source code analyzer

6 Conclusion

The bismon free software is developed in an agile and incremental manner 200 (required by its bootstrapping
approach), with continuous updates to https://github.com/bstarynk/bismon/.

In october 2018, the persistence machinery is working and daily used to enhance bismon. The agenda
mechanism is working. A naive stop-the-world mark-and-sweep precise garbage collector is implemented.
The generation of internal C code is done (by hand-written routines, still coded in C), this enables the meta-
programming approach. The web interface is worked upon: a libonion based infrastructure is already han-
dling HTTP requests, and a GDPR-compliant login form is presented on web browsers. Our jsweb_module
contains the functions related to Javascript (nearly complete) and HTML generation (work in progress). The
syntactical editor (replacing the crude GTK interface) and then the GCC plugin generation should be worked
on.

In august 2019, the web machinery is mostly working. More generated C code is available. The JSON
handling is incomplete. Bismon continuations are almost201 reifiable into transient objects, having as payload
a linked-list sequence of call frames.

The final D1.3 v2 version (scheduled for M30) of this deliverable will explain the Web interfaces (both
for the ordinary user, i.e. the IoT developer; and for the static analysis expert) and the generation of C++
code for GCC plugins, with some examples of simple, IoT focused, whole-program static source code analysis
performed by bismon. So the final D1.3 v2 document will contain a longer conclusion.

Within the timeframe allocated for CHARIOT it was not realistically possible in May 2020 to partly or fully
generate GCC plugins C++ code (like past GCC MELT did), in particular because BISMON has no usable doc-
umentation, and understanding its persistent heap of 3485 objects is not realistic without such a documentation.
A garbage collection Jones et al. [2016] design bug (and its subtle interaction with the powerful but complex
GTK graphical toolkit) makes the current BISMON (of git id cb1c4ccfe3802fa33....) extremely brittle,
to the point of being barely usable. The original insight was to generate most parts of such Bismon documen-
tation, per the Unix philosophy and decade of related practice (from the original troff to prior practice in
GCC MELT, or to DOXYGEN or OCAML ...) but such a documentation, even if it is quite reasonably easy to
generate from an orthogonally persistent semantic network such as BISMON’s heap, would largely overflow the
70 pages hard limit (CHARIOT consortium defined) of this report: notice that the generated GCC MELT past
documentation had hundreds of A4 pages....

Machine learning techniques inspired by Zhang and Huang [2019] could be relevant in BISMON. See also
the REFPERSYS research202 project, inspired by Pitrat [1996, 2009a,b]; Starynkevitch [1990]; Bordini et al.
[2020]. The deeplearning4j.org infrastructure (used as a web service), or opensource C++ machine
learning libraries such as mlpack.org or TENSORFLOW machine learning, or topological data analysis
libraries such as GUDHI (see The GUDHI Project [2020]; Maria [2020]; Maria et al. [2020]) or TTK (see
Bin Masood et al. [2019]) be coupled to BISMON. Such future work would however require further funding for
at least a year of qualified developer work (see also Maglogiannis [2007] and the ai4eu.eu project, but don’t
forget the empirical Hofstadter’s law).

200So there are no released stable versions of this software, but snapshots.
201Thanks to generated invocations of the LOCALFRAME_BM C macro, which provides 90% of the development work: full tran-

sient reification of partial continuations, that is of call stack segments, is just a matter of clustering emitted stack-local struct
stackframe_stBM-based linked-lists of Bismon call frames.

202Also related: talks in the memory of J.Pitrat, AFIA, March 6th, 2020, Paris.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 50 of 77

https://github.com/bstarynk/bismon/
https://gcc.gnu.org/onlinedocs/gccint/Plugins.html
http://starynkevitch.net/Basile/gcc-melt/
https://www.gtk.org/
https://github.com/bstarynk/bismon/commit/cb1c4ccfe3802fa330d48fc97c2913943736ba2f
https://en.wikipedia.org/wiki/Unix_philosophy
https://www.troff.org/
http://starynkevitch.net/Basile/gcc-melt/
https://www.doxygen.nl/
http://ocaml.org/
https://en.wikipedia.org/wiki/Semantic_network
http://starynkevitch.net/Basile/gcc-melt/
http://refpersys.org/
https://deeplearning4j.org/
https://mlpack.org
https://www.tensorflow.org/
https://gudhi.inria.fr/
https://topology-tool-kit.github.io/
https://www.ai4eu.eu/
https://en.wikipedia.org/wiki/Hofstadter%27s_law
https://afia.asso.fr/journee-hommage-j-pitrat/


the BISMON static source code analyzer

Appendix A Building bismon from its source code

We focus here on how to build bismon from its source code on Debian-like distributions running on x86-64
computers, such as Debian Buster 10.6, or Ubuntu 20.04, or Linux Mint 20. Familiarity with the command line
is required203, with root access (e.g. using sudo). Fluency with git is expected, and it is strongly advised
to git commit every few hours (including your persistent store, when bismon is not running).

The reader is expected to be authorized (by his/her management, if that build is done professionally) to build
bismon from its source code and probably also some recent GCC cross-compiler on his/her Linux workstation
and should budget several days of work for that.

Be aware that bismon requires specifically some GCC 10 compiler and won’t work with e.g.
a GCC 9 compiler.

The build procedure happens in two phases:

• a configuration step, to be run only once in a while, or when your Linux distribution has changed or
upgraded, or when you have added extra useful libraries, or have upgraded your GCC compiler.

• a compilation step, to be run more frequently (e.g. every night using crontab(1)....)

A.1 Prerequisites for building bismon

The bismon source code is on github.com/bstarynk/bismon/ and the reader is expected to be capa-
ble of getting that source code on his/her Linux workstation. A possible command to retrieve that code might be
git clone https://github.com/bstarynk/bismon.git ; you’ll then obtain a fresh bismon/
subdirectory containing the source code. About 100Mbytes of disk space (for less than 2000 inodes) is required.

A recent libonion library204 (version 0.8 at least) is required. Fetch libonion’s source code from
github.com/davidmoreno/onion/ and follow its build instructions: probably mkdir _build then
cd _build then cmake .. then make and at last sudo make install. That libonion library needs
less than 25Mbytes of disk space, cmake and several libraries (in particular support for openssl, gcrypt,
systemd, sqlite3, lzma, libicu, libpam) to be built. Check and inspect your onion/version.h
header file205, it should have some ONION_VERSION close to 0.8.150 at least.

The GNU readline (GPLv3+ licensed) library is required, at version 8. It is useful for autocompletion
abilities in interactive situations.

Ian Lance Taylor’s libbacktrace library is needed for backtraces on error and in warnings, and possibly for
future (generated) introspective code. This library takes advantage of DWARF debugging metadata in object
files and executable, so it is advised to compile every Bismon source file (either handwritten or generated) with
-g (and possibly also -O2 for optimization) flag to gcc or g++.

The Bismon project uses internally GNU make, version 4.2 at least. Our hand-written GNUmakefile is
driving it.

A.2 File naming conventions in bismon

By our conventions, files whose base name206 start with a single underscore (that is, a _ character) are gen-
erated: for example _bismon-config.mk and _bm_config.h, etc... However, some of them need to be
kept, backed-up and version controlled but would be regenerated by running make redump.

File names whose base name start with two underscores, such as __timestamp.c, are temporary and
can be removed. They would be removed by running make clean or make distclean. Of course,
object files (suffixed .o) and shared libraries (suffixed .so, see Drepper [2011]) are also temporary, and could
be removed then regenerated. Some of these (in particular under modubin/ directory) are dlopen(3)-ed.

203For example, the reader is expected of being able to build GNU make or GNU bash from their source code.
204This is an open source library for web HTTP and HTTPS service. It is LGPL licensed.
205You might use locate(1) or find(1) to find files on your Linux box. On my Linux machine, that header file is in

/usr/local/include/onion/version.h and comes from libonion git commit 43128b031995....
206In the sense of the basename(1) command applied to the file path.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 51 of 77

http://debian.org/
https://www.debian.org/releases/stable/
https://ubuntu.com/
https://linuxmint.com/
https://git-scm.com/
https://gcc.gnu.org/
https://gcc.gnu.org/gcc-10/
https://man7.org/linux/man-pages/man1/crontab.1.html
https://github.com/bstarynk/bismon/
https://github.com/davidmoreno/onion
https://cmake.org
https://www.gnu.org/software/readline/
https://github.com/ianlancetaylor/libbacktrace
https://en.wikipedia.org/wiki/DWARF
https://www.gnu.org/software/make/
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/Library_(computing)#Shared_libraries
https://man7.org/linux/man-pages/man3/dlopen.3.html
https://www.gnu.org/software/make/
https://www.gnu.org/software/bash/
https://man7.org/linux/man-pages/man1/locate.1.html
https://man7.org/linux/man-pages/man1/find.1.html
https://github.com/davidmoreno/onion/commit/43128b03199518d4878074c311ff71ff0018aea8
https://man7.org/linux/man-pages/man1/basename.1.html


the BISMON static source code analyzer

The main executable is named bismon. But BM_makeconst and BISMON-config are auxiliary
metaprograms (generating C or C++ code). All three are ELF executables.

A.3 Naming conventions and source files organization for bismon

naming and coding conventions in hand-written C code

• All public ELF names of hand-written functions or global variables (as known to nm(1), objdump(1)
or to dlsym(3) are conventionally suffixed by _BM . For example, we have some prime_above_BM
function giving some prime number above a given reasonable positive integer.

• We have conventional suffixes: Our public struct-s are generally tagged with a name ending with
_stBM ; Our typedef-ed types are suffixed with _tyBM ; usually their field names is globally unique
and share a common prefix (e.g. in struct parstoken_stBM field names all start with tok). Public
signatures (useful for C function pointers) are suffixed with _sigBM (for example, the initialization of
generated modules is a C function of signature moduleinit_sigBM ). Most public enum-s have their
name ending with _enBM e.g. space_enBM for space numbers.

• Preprocessor symbols or macros are in all capital ending with _BM , notably the important LOCALFRAME_BM
variadic macro for local roots known to our garbage collector.

Hand-written C code files

• The header file bismon.h is our only public header file, and is #included everywhere. It includes
system headers (e.g. <unistd.h> or <pthread.h>, and the following “internal” headers:

1. cmacros_BM.h is #define-ing important global preprocessor macros, including FATAL_BM
for fatal errors, LOCALFRAME_BM variadic macro for local roots, DBGPRINTF_BM for debugging
output, WARNPRINTF_BM for warning messages, INFOPRINTF_BM for informational messages,
etc... The ROUTINEOBJNAME_BM macro is giving the routine name of a given objid.

2. id_BM.h is implementing our object ids.

3. types_BM.h is defining our global types, struct-s, etc... Notice the value_tyBM opaque
type (a void* pointer) for Bismon values.

4. global_BM.h is declaring our external global data, some of which is generated.

5. fundecl_BM.h is declaring our global hand-written functions. Some of them are static
inline for efficiency reasons (for example elapsedtime_BM returning the elapsed clock
time as a double number in seconds, or valhash_BM to compute the hash code of a Bismon
value.

6. inline_BM.h is implementing our global static inline functions.

• agenda_BM.c is implementing our agenda with tasklets (see §1.7 above).

• allocgc_BM.c is implementing low-level memory allocation and garbage collector (see §2.2 above).

• assoc_BM.c is implementing associative lists and tables, in particular for object attributes.

• The code_BM.c file contains many Bismon routines for closures.

• The dump_BM.c file is implementing the dump of the persistent store. See § 2.3.

• The emitcode_BM.c file contains many Bismon routines for emission or of C code in modules.

• The engine_BM.c file is related to tasklets in the agenda (see §1.7 above).

• gencode_BM.c is related to C code generation.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 52 of 77

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://man7.org/linux/man-pages/man1/nm.1.html
https://man7.org/linux/man-pages/man1/objdump.1.html
https://man7.org/linux/man-pages/man3/dlsym.3.html


the BISMON static source code analyzer

• id_BM.c implements objid support.

• jsonjansson_BM.c is for JSON support. values.

• list_BM.c is for list values.

• load_BM.c is for loading the persistent store .

• main_BM.c has the main function and support functions (fatal errors, etc...).

• node_BM.c implements node values.

• object_BM.c implements objects.

• parser_BM.c implements the parser with callbacks

• primes_BM.c contains an array of prime numbers, and related utilities. They could be useful in hash
tables and in some hash functions. In several cases, flexible array members inside BISMON are allocated
with a prime number size.

• scalar_BM.c implements scalar values numbers. (strings, boxed doubles).

• sequence_BM.c implements sets and tuples.

• user_BM.c relates to reifications of contributors and users.

• misc_BM.cc is a C++ file, to take advantage of some standard C++ containers.

The persistent store
The persistent data (see §2 above) sits in files store*BISMON.bmon (using glob(7) notation); more

precisely

• store1-BISMON.bmon is for predefined objects. The header file genbm_predef.h is generated
from them at dump time.

• file store2-BISMON.bmon contains the global object space. Several global objects describe modules
whose C code is generated (e.g. at dump time) under sub-directory modules/ .

• other storei-BISMON.bmon textual files contain207 objects in space ranked i . . . . Notice that all these
files are both loaded and dumped, and should be backed-up (like the modules/ directory) regularily.

These generated textual storei-BISMON.bmon files should be version controlled by the git tool. You
might use the make redump command to regenerate the persistent store and the modules, and it is advised208

to run it daily.
Users and contributors related files
The BISMON system does need some minimal data about users. The reader of this report is expected to

verify (perhaps with the help of lawyers) that such data is compliant and compatible with regulations like the
European GDPR.

• the textual file contributors_BM describes the known contributors to the BISMON software. That
file has comments (or ignored lines) starting with the # character. Non-comment lines contain three or
four fields, separated by semi-colons (i.e. ;):

1. the user or contributor name, as known to the system. It could be some pseudo.

2. the unique objid of the BISMON object describing that user or contributor

3. the email of that user.
207So there cannot be any store0-BISMON.bmon file, since space 0 is for transient objects which are never dumped.
208Once make redump fails, the persistent store is inconsistent and corrupted. This should not happen, but when it does, use git

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 53 of 77

https://en.wikipedia.org/wiki/Flexible_array_member
https://man7.org/linux/man-pages/man7/glob.7.html
https://git-scm.com/
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect


the BISMON static source code analyzer

4. an optional email alias of the same user

• the textual file passwords_BM associates an objid with some encrypted password. known This is used
for the login form of the web interface, and should not be readable by group or others. Lines inside this
files are either comments (or ignored lines) starting with the # character, or entry lines with a user name,
then a semicolon, then the objid, then a semi-colon, then the encrypted password.

Since the main author of this draft report is known to BISMON and reified in the object of objid _6UYrSn7piPM_3eYhLtoXl,
the file contributors_BM should at least contain a line like perhaps Basile Starynkevitch;_6UYrSn7piPM_3eYhLtoXlmL;bstarynkevitch@email.invalid;bstarynk@localhost

It is preferable to run the ./bismon software with specific command lines argument to update the con-
tributors file and the passwords file.

A.4 Generators and meta-programs in bismon

Generating code is one of the core ideas of BISMON. Such code generation happens both at build time and
at run time. The generated code is usually some C file209.

At build time, two meta-programs and some shell or GNU awk scripts are involved; each of these two
metaprograms has a single handwritten C++ source code file:

• BISMON-config is querying some parameters from the user (that is the Linux sysadmin installing
bismon) and generates some C++ files.

• BM_makeconst is usually scanning some handwritten C file (for example, our engine_BM.c file,
etc...) and producing some headers or utility files.

• timestamp-emit.sh is a shell script (using internally the emit-git-sources.gawk GNU
gawk script) which emits a simple C file (containing only data) with the timestamp and some metadata
information about the build.

But once the bismon ELF executable exists, the above metaprograms are not useful anymore. However,
they are needed to recompile bismon (which you might want to do periodically, i.e. every evening).

At run time, the bismon executable is routinely generating C or C++ code. Some C code (under the
modules/ directory) is generated to extend the behevior of bismon itself : the generated C code is compiled,
and the resulting shared object is dlopen(3)-ed but never210 dlclose(3)-ed.

Conventionally, we want the generated persistent files to contain the §GENERATED_PERSISTENT§ string,
and if possible to have a § inside the file path. But generated temporary (or transient) files should contain the
¤GENERATED¤ string, and if possible have a starting underscore (that is, a _ character) in their file name.

@@TO BE COMPLETED

Appendix B Configuring bismon from its source code

Warning: This configuration step has to be done again as soon as your GCC compiler or cross-compiler has
changed versions, or when you have added new important libraries on the LINUX workstation running Bismon.

First, inspect, and improve if needed, the Configure shell script for /bin/bash. Then run that
script using the ./Configure command.

Appendix C Building bismon from its source code

Warning: This building step should probably be run every evening, e.g. using a crontab(1) job. It should
be done only after the ./Configure script has been successfully run.

First, inspect, and improve if needed, the Build shell script for /bin/bash. Then run that script

bisect to find the latest consistent state of your Bismon repository.
209With additional funding and more time, we could have used libgccjit to generate directly some *.so shared object.
210Not dlclose-ing is of course some kind of memory leak, since the virtual address space of the process running bismon is

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 54 of 77

https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://man7.org/linux/man-pages/man3/dlopen.3.html
https://man7.org/linux/man-pages/man3/dlclose.3.html
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
http://gcc.gnu.org/
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://man7.org/linux/man-pages/man1/crontab.1.html
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://gcc.gnu.org/onlinedocs/jit/
https://en.wikipedia.org/wiki/Memory_leak
https://en.wikipedia.org/wiki/Virtual_address_space


the BISMON static source code analyzer

using the ./Build command.

C.1 Checking the version of bismon

Once the ./Build script did work correctly, there should be some bismon executable file. Check first using
the file ./bismon command, it should give you something similar to:

./bismon: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked,
interpreter /lib64/ld-linux-x86-64.so.2,
BuildID[sha1]=b4e74f225dff6115a01764abfe361a1b7757a208, for GNU/Linux 3.2.0,
with debug_info, not stripped

Then use ldd ./bismon to verify that all dependencies are present. On some computer, I am possibly
getting the following output:

% ldd ./bismon
linux-vdso.so.1 (0x00007ffee532a000)
libonion.so.0 => /usr/local/lib/libonion.so.0 (0x00007f5ee9ec2000)
libglib-2.0.so.0 => /lib/x86_64-linux-gnu/libglib-2.0.so.0 (0x00007f5ee9d99000)
libjansson.so.4 => /usr/local/lib/libjansson.so.4 (0x00007f5ee9d8a000)
libcrypt.so.1 => /lib/x86_64-linux-gnu/libcrypt.so.1 (0x00007f5ee9d4f000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f5ee9d2c000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f5ee9d24000)
libstdc++.so.6 => /lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f5ee9b43000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f5ee99f4000)
libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f5ee99d9000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f5ee97e7000)
libxml2.so.2 => /lib/x86_64-linux-gnu/libxml2.so.2 (0x00007f5ee962d000)
libpam.so.0 => /lib/x86_64-linux-gnu/libpam.so.0 (0x00007f5ee961b000)
libgcrypt.so.20 => /lib/x86_64-linux-gnu/libgcrypt.so.20 (0x00007f5ee94fb000)
libgnutls.so.30 => /lib/x86_64-linux-gnu/libgnutls.so.30 (0x00007f5ee9325000)
libsqlite3.so.0 => /lib/x86_64-linux-gnu/libsqlite3.so.0 (0x00007f5ee91fc000)
libhiredis.so.0.14 => /lib/x86_64-linux-gnu/libhiredis.so.0.14 (0x00007f5ee91e9000)
libsystemd.so.0 => /lib/x86_64-linux-gnu/libsystemd.so.0 (0x00007f5ee913a000)
libpcre.so.3 => /lib/x86_64-linux-gnu/libpcre.so.3 (0x00007f5ee90c7000)
/lib64/ld-linux-x86-64.so.2 (0x00007f5eea0b9000)
libicuuc.so.66 => /lib/x86_64-linux-gnu/libicuuc.so.66 (0x00007f5ee8edf000)
libz.so.1 => /lib/x86_64-linux-gnu/libz.so.1 (0x00007f5ee8ec3000)
liblzma.so.5 => /lib/x86_64-linux-gnu/liblzma.so.5 (0x00007f5ee8e9a000)
libaudit.so.1 => /lib/x86_64-linux-gnu/libaudit.so.1 (0x00007f5ee8e6e000)
libgpg-error.so.0 => /lib/x86_64-linux-gnu/libgpg-error.so.0 (0x00007f5ee8e4b000)
libp11-kit.so.0 => /lib/x86_64-linux-gnu/libp11-kit.so.0 (0x00007f5ee8d13000)
libidn2.so.0 => /lib/x86_64-linux-gnu/libidn2.so.0 (0x00007f5ee8cf2000)
libunistring.so.2 => /lib/x86_64-linux-gnu/libunistring.so.2 (0x00007f5ee8b70000)
libtasn1.so.6 => /lib/x86_64-linux-gnu/libtasn1.so.6 (0x00007f5ee8b5a000)
libnettle.so.7 => /lib/x86_64-linux-gnu/libnettle.so.7 (0x00007f5ee8b20000)
libhogweed.so.5 => /lib/x86_64-linux-gnu/libhogweed.so.5 (0x00007f5ee8ae8000)
libgmp.so.10 => /lib/x86_64-linux-gnu/libgmp.so.10 (0x00007f5ee8a62000)
librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1 (0x00007f5ee8a57000)
liblz4.so.1 => /lib/x86_64-linux-gnu/liblz4.so.1 (0x00007f5ee8a36000)
libicudata.so.66 => /lib/x86_64-linux-gnu/libicudata.so.66 (0x00007f5ee6f75000)
libcap-ng.so.0 => /lib/x86_64-linux-gnu/libcap-ng.so.0 (0x00007f5ee6f6d000)
libffi.so.7 => /lib/x86_64-linux-gnu/libffi.so.7 (0x00007f5ee6f5f000)

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 55 of 77



the BISMON static source code analyzer

At last, you can ask bismon to give its version information using ./bismon -version which might
output something like:

% ./bismon --version
./bismon: version information
timestamp: jeu. 28 janv. 2021 13:32:53
git id: d62d320623ad2a7e73019e736870039508c36d02
last git commit: d62d320623ad tell about the Build script in end of BISMON-config.cc
last git tag: heads/master
source checksum: d929d9edebcd6a76618901c7ebbaed71
source dir: /home/basile/bismon-master
GNUmakefile: /home/basile/bismon-master/GNUmakefile

########
run

./bismon --help
to get help.

Please report the output of ./bismon -version before any question on BISMON.
The output of ./bismon -help is giving up to date information about invoking ./bismon (e.g. in

some cron script). For example:

Usage:
bismon [OPTION?] * the BISMON static source code analyzer *

BISMON is a static source code analyzer, using GCC.
see github.com/bstarynk/bismon commit 7b3f952207eb46a6...
WITHOUT WARRANTY, since GPLv3+ licensed

Help Options:
-h, --help Show help options

Application Options:
-l, --load=DIR load persistent heap from directory DIR (default is .)
-d, --dump=DIR dump persistent heap into directory DIR
--dump-after-load=DIR dump after load the persistent heap into directory DIR
--contributors-file=PATH use PATH as the contributors file;
.. default is contributors_BM or $HOME/contributors_BM
--passwords-file=PATH use PATH as the password file;
.. default is passwords_BM or $HOME/passwords_BM
--contact-file=PATH use PATH as the master contact file;
.. default is contact_BM or $HOME/contact_BM
--add-passwords=PASSWORDENTRIES use the given PASSWORDENTRIES file (if it is -, stdin) containing lines like <username>:<password> to add passwords
--emit-has-predef=NB emit NB ’HAS_PREDEF_BM’
-j, --job=NBJOBS number of worker threads NBJOBS (>=2, <16)
--random-seed=SEED set the initial PRNG seed for g_random_int to given SEED
--pid-file=PATH use PATH as the pid file;
.. default is _bismon.pid
--run-command=CMD run the command CMD
-i, --init-after-load=<closure> (or object) do the <closure> after loading, as initialization
-c, --chdir-after-load=DIR change directory after load to DIR (perhaps making it)
--parse-value=EXPR parse (after loading) the value EXPR
--test-plugin=PLUGINAME run the drafts/testplugin_PLUGINAME.so (after loading) the test-

plugin PLUGINAME
--comment-predef=COMM set comment of next predefined to COMM
--add-predef=PREDEFNAME add new predefined named PREDEFNAME
--contributor=CONTRIBUTOR add or change contributor CONTRIBUTOR,
like ’First Lastname <email@example.com>’
or ’First Lastname;email@example.com;aliasmail@example.org’
(this puts personal information relevant to European GDPR in file contributors_BM)
--print-contributor-of-oid=CONTRIBOID print tab-separated: (full name, objid, email, alias) of contributor of given CONTRIBOID then exit,
--remove-contributor=CONTRIBUTOR remove existing contributor CONTRIBUTOR,
like ’First Lastname’
or email@example.com
or some existing contributor oid similar to _2PFRochKb3N_3e8RFFAUi9K
(this should remove personal information relevant to European GDPR in file contributors_BM)
--cleanup cleanup memory at end (for valgrind)
... (see valgrind.org for more).
--final-gc forcibly run a final garbage collection (after any dump or event loop)
--batch run in batch mode without user interface

never shrinking.. This explains why the bismon process should be restarted at least daily. Our manydl.c program demonstrates that
dlopen(3)-ing many thousands of times is practically possible on modern LINUX workstations.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 56 of 77

https://github.com/bstarynk/misc-basile/blob/master/manydl.c
https://man7.org/linux/man-pages/man3/dlopen.3.html


the BISMON static source code analyzer

-D, --debug gives lots of debug messages
--debug-after-load enable debug messages after load
--emit-module=MODULEOBJ emit module MODULEOBJ
--mailhtml-file=FILE FILE is the file, in HTML, to be sent to contributor
--mailhtml-subject=SUBJECT SUBJECT is the subject of the email to be sent to contributor
--mailhtml-contributor=CONTRIBUTOR CONTRIBUTOR is to whom the email will be sent
--mailhtml-attachment=ATTACHEDFILE ATTACHEDFILE is the attached file of the email
--version gives version information
--ssl-certificate=FILEPREFIX Uses FILEPREFIX.pem & FILEPREFIX.key for SSL certificate to libonion
--web-base=WEB_BASE A string like <host>:<port>, default is localhost:8086, describing the base of web URLs served by bismon
--anon-web-session=COOKIEFILE Create an anonymous web session, and write its cookie in the given COOKIEFILE

Appendix D Dumping and restoring the bismon persistent heap

It is absolutely essential that the make redump command works well., and you need to run that command
regularily. See also §2.3

It is practically important to use the periodically git version control system on the repository, and this
includes the persistent heap dump files store*BISMON.bmon - when bismon is not running. It is recom-
mended to git commit these files twice a day at least, when the bismon executable is not running.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 57 of 77

http://git-scm.com/


Index
!(, 35
!), 35
«, 35
», 35
Σ, 35
objid abbreviation, 31

A
abstract syntax tree, 22
abstraction, 7
address, 38
agenda, 27, 46, 52
agenda_BM.c file, 52
AI4EU project, 50
algorithm, 33
alias

pointer, 38
alloca stack-allocation primitive, 40
allocgc_BM.c file, 52
analysis, 4

static, 8
and_then, 46
A-normal form, 12
application, 22

web, 22
ARDUINO platform, 38, 39
ARM architecture, 8
artificial intelligence, 22
as, 4
as-if rule, 15
asm keyword, 40
ASN-1, 8
assoc_BM.c file, 52
association, 52
associative table, 32
AST, 22, 29, 48
atomic, 31
atomic variable, 22
attribute, 31, 36, 41, 52
auto keyword, 40
automotive crash, 40
avalanche, 40
AVR microcontroller, 38

B
backup

remote, 40
BARELFISH operating system, 29
basic block, 13
basiclo_assign, 23
basiclo_cexpansion, 23

basiclo_cond, 23
basiclo_exit, 23
basiclo_extractjsonstmt, 43
basiclo_fail, 23
basiclo_function, 23
basiclo_lockobj, 23
basiclo_loop, 23
basiclo_minifunction, 23
basiclo_return, 23
basiclo_run, 23
basiclo_when, 23
basiclo_while, 23
big data, 38
binutils, 4
Bismon, 6, 11, 20
bismon, 4
_bismon-config.mk, 51, 54
bismon.h header, 52
_bm_config.h, 51
BM_makeconst metaprogram, 54
bootstrap, 21, 24, 34
browser, 18, 21, 27, 45
buffer, 47
buffer overflow, 39
Build script, 55

automation, 51
build automation, 17
building

bismon, 55

C
C++, 53
C++11, 6, 16
C11, 6
CAIA, 34
call frame, 50
call stack, 39, 50
callback

parser, 53
canonical JSON encoding, 41
canonjsonifyvalue

canonjsonifyvalue_BM, 41
cast

pointer, 40
CENTAUR system, 22
checkpointing

application, 40
CHICKEN, 34
CHICKEN SCHEME, 34
city

smart, 40

58



the BISMON static source code analyzer

CLANG, 4
CLASP, 34
class, 31, 32, 35
clean, 51
clock

real-time, 39
closure, 30, 41, 46, 52
cmacros_BM.h header, 52
code, 39

generation, 52
refactoring, 40
scientific, 40

code analysis, 4
code chunk, 23
code refactoring, 40
code review, 7, 38
code smell, 38
code_BM.c file, 52
collaborative sofware, 22
collision, 30
comment

comment, 24
compiler, 7, 11
compiler sanitizer, 9
component, 31, 41
computing grids, 40
concurrency, 40
condition variable, 22
configuration, 54
configuration file, 39
Configure script, 54
container

C++, 16, 53
contination

reification, 50
contributor, 25, 45, 53
contributors_BM file, 53
control

keyboard sequence, 48
control flow graph, 37
cookie, 45
copy/paste, 48
copying

garbage collection, 33
copy-paste, 25
corruption

file system, 39
COVID 19 illness, 40
critical software, 10
crontab(5), 40
cross-compiler, 11
cryptographic protocol, 39
current_closure, 24

current_closure_size, 24
current_module, 24
current_routine, 24

D
data, 29

global, 52
data analysis

topological, 38
data mining, 22, 38
database, 33, 40
DBGPRINTF_BM macro, 52
decision

algorithm, 33
declarative programming, 22
decltype keyword, 40
DECODER, 29, 38
decoding

JSON nodal, 42
DEEPLEARNING4J framework, 50
defect

software, 8
denial-of-service, 45
depth-first, 33
development

software, 6
dictionary, 32
distclean, 51
distributed computing, 28
DOM, 48
Domain-Specific Language

DSL, 20
double, 29, 41

boxed, 53
doxygen documentation generator, 7
DSL, 4, 7, 20, 22, 48

domain specific language, 7
dump, 20, 33, 46, 52, 53
dump_data, 36
dump_scan, 36
dump_value, 36
dump_BM.c file, 52
dumper, 36
dumper_object, 36
dynamic request, 45

E
editor

syntactical, 22, 48
elapsedtime_BM.h function, 52
ELF, 52
email, 39
email classification, 22
emission, 52

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 59 of 77



the BISMON static source code analyzer

emit_xhtml, 46
emit_xhtml_open, 47
emitcode_BM.c file, 52
emit-git-sources.gawk internal GAWK script,

54
endianness, 8
engine_BM.c file, 52
error condition, 39
/etc/ configuration directory, 39
ETHERNET protocol, 8
ethics, 22
expert

IoT, 6
software engineering, 6, 9
static analysis, 22, 48

exploration
depth-first, 33

extract_json, 43
extraction

from JSON, 43
extractor

from JSON, 43

F
face recognition, 22
failure

of standard C functions, 39
FATAL_BM macro, 52
fault injection, 39
file, 34, 51

generated, 54
file system, 39
flexible array member, 53
floating point, 29

precision, 39
FLTK, 6
forecast

avalanche, 40
forge, 5
formal methods, 9
FRAMA-C, 4
framework, 22
fread function, 39
FREEBSD operating system, 38
FREERTOS kernel, 38, 39
fscanf function, 39
function, 52

inline, 52
key, 48

fundecl_BM.h header, 52

G
garbage collection, 20, 26, 33
garbage collector, 32, 52

GCC, 4
GCC MELT, 4, 50
GDPR, 21, 26, 53
genbm-predef file, 53
gencode_BM.c file, 52
¤GENERATED¤, 54
§GENERATED_PERSISTENT§, 54
generation, 52

of code, 52
of files, 54

Generic, 4
Gimple, 9
Gimple, 4, 12
git, 22, 24, 53
GLIBC library, 39
global_BM.h header, 52
GPL, 4
grid

smart, 40
GRID4EU project, 40
GTK, 24
GUDHI topological data analysis framework, 50

H
H2020, 2, 7, 10, 29
hash

of values, 52
hash map, 32
hash set, 32
hash table, 53
hexa, 47
homoiconicity, 48
html_active_object, 47
html_element_object, 47
html_sequence_object, 47
html_spacing, 47
html_void_element_object, 47
HTML5, 46, 48
HTTP (web protocol), 39
HTTPS protocol, 8

I
I/O error, 39
IA-32 architecture, 8
id, 47
id_BM.h header, 52, 53
IDE

integrated development environment, 6
idle queue, 27
IEEE 802.11 protocol, 8
IMAP (email retrieval protocol), 39
immutable, 29
implementation

of programming languages, 7

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 60 of 77



the BISMON static source code analyzer

INFOPRINTF_BM macro, 52
inline_BM.h header, 52
int, 47
integer, 29, 41
integrated development environment, 6
IoT, 4, 6, 8, 20
IP protocol, 8
IPSE, 10

J
JPEG image encoding, 8
JSON, 32, 41, 53

extractor, 43
json_object, 41
jsonjansson_BM.c file, 53

K
kernel

operating system, 38
keyboard, 48

L
language

domain specific (DSL), 7
dynamic, 22
programming, 7

LATEXformatter, 7
ld, 4
libonion, 4, 6
library

shared, 51
LI-FI protocol, 8
linked list, 32
LINUX operating system, 6, 38, 39
list

associative, 52
list_BM.c file, 53
LLVM, 4
load, 33, 53
load_BM.c file, 53
LOCALFRAME_BM, 50
LOCALFRAME_BM macro, 52
login, 21, 45, 46
login template, 21
lout document formatter, 7

M
machine learning, 9, 40, 50
main_BM.c file, 53
make, 51
malloc, 39
manipulation

of AST, 48
markup

element, 48

medical device, 40
MELT, 4
member

flexible array, 53
memory, 39

code, 39
shared, 22
virtual, 22

MENTOR system, 22, 48
meta-data, 39
meteorological

computing grids, 40
methods

formal, 9
MIPS architecture, 38
misc_BM.cc file, 53
MISRA C, 38
MLPACK machine learning framework, 50
modubin/, 51
module, 26, 33, 52, 53

webxhtml_module, 46
modules/ directory, 53
mtime, 31, 35
multi-threading, 22
multi-tier programming, 28
MUSL LIBC library, 39
mutable, 30
mutator thread, 21
mutex, 22, 29

N
name, 32, 35, 47
naming

conventions, 51
nb_conds, 23
newline, 47, 48
nil, 30, 41
nlsp, 47, 48
nodal

JSON decoding, 42
node, 30, 41, 42, 48

transient, 30
node_BM.c file, 53
non-critical system, 10
NTP - network time protocol, 39
NULL in C, 38, 42

JSON, 42
null_object, 24
null_value, 24
nullptr in C++, 38
nuweb system, 7

O
object, 29, 30, 41, 47, 48, 52, 53

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 61 of 77



the BISMON static source code analyzer

file, 51
object_BM.c file, 53
objid, 30, 36, 41, 42, 45, 52, 53
OCAML, 34
ocamldoc documentation generator, 7
octa, 47
oil industry, 40
OPENWRT router, 39
operating system, 38
optimization, 13
orthogonal persistence, 33
out of memory, 39

P
parser_BM.c file, 53
partial evaluation, 34
pass

optimization, 13
passwords_BM file, 54
payload, 32, 36, 41
persistence, 4, 20, 33, 52, 53

orthogonal, 33
persistent, 27

monitor, 11
store, 53

persistent monitor, 11
persistent state, 33
persistent store, 22
personal data, 21
personel, 22
photography

digital, 9
plugin, 21
pointer, 38
power

grid, 40
precision, 39
predefined, 31, 33
prime, 53
primes_BM.c file, 53
priority, 27
processor

multi-core, 22
program

analysis, 4
programming

declarative, 22
programming languages, 7
projection, 34
PTHREAD library, 39

Q
QT, 6

R
race condition, 10, 22
RASPBERRYPI system, 8, 39
read-only memory, 39
redump, 51, 57
refactoring

code, 40
REFPERSYS project, 33, 50
register keyword, 40
register allocation, 40
regulation

compliance to, 21
reification

of continuations, 50
remote

database, 40
remote backup, 40
repository, 5
reproducing

faults, 39
request, 45

dynamic, 45
static, 45

RFB - remote framebuffer protocol, 8
Rice’s theorem, 40
Rice’s theorem, 38
RISC-V architecture, 38
routine, 30, 31, 52
routine address, 31
routine signature, 31
ROUTINEOBJNAME_BM macro, 52
rsync(1), 40

S
sanitizer

compiler, 9
SATA protocol, 8
SBCL, 34
scalar_BM.c file, 53
Scheme, 34
scientific code, 40
SDK

software development kit, 6
search

depth-first, 33
SELF, 34
semantics, 34
sequence, 30, 48
sequence_BM.c file, 53
session

web session, 45
set, 29, 41
shared memory, 22
signature

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 62 of 77



the BISMON static source code analyzer

function, 35
silver bullet, 8
simulation software, 40
size, 30
smart cities, 40
smell

code, 38
SMTP (mail sending protocol), 39
social credit system, 22
software development, 6
software development kit, 6
SOFTWAREHERITAGE project, 40
son, 30
source code, 6, 22

Bismon, 6
space, 31, 47, 48
specificaton, 7
SQLITE database library, 39
SSA, 4
SSH secure shell, 8
stack overflow, 37, 39
stackframe_stBM, 50
STANCE project, 39
state, 33
static analysis, 8, 22

tool, 9
static code analysis, 4
static request, 45
store, 52

persistent, 53
store*BISMON.bmon files, 53
storei-BISMON.bmon files, 53
string, 29, 41, 53
string buffer, 32
suffix

file, 52
super-compuiters, 40
surveillance, 22
SVG, 48
synchronization, 22
syntax-oriented

editor, 22, 48

T
tasklet, 27, 33, 46, 52
temporary_attribute_object, 35
temporary_webhandler_dict_object, 46
test, 39
thread, 39

mutator, 21
thread pool, 26
threading

multi-, 22
time, 39

elapsed, 52
time(7), 39
timeout

web, 46
timestamp-emit.sh shell script, 54
timing, 39
TLS cryptographic protocol, 39
topological data analysis, 38, 50
touch, 31
tracing

garbage collection, 33
transcompiler, 22
transient, 20, 27, 31, 36, 46, 48

node, 30
object for continuations, 50

transient_connective_object, 30, 33
transpiler, 22
tree

JSON, 42
TRL, 7, 38, 45
TTK topological data analysis toolkit, 50
tuple, 29, 41
twins

digital, 40
type inference, 40
types_BM.h header, 52

U
undefined behavior, 6, 10
union, 40
unspecified, 30, 41
USB protocol, 8
USB storage, 39
user_BM.c file, 53
UUID, 30

V
valhash_BM function, 52
value, 29

double, 53
list, 53
node, 53
object, 53
string, 53

value_tyBM opaque types, 52
vector, 32
version control, 24
VESSEDIA, 10
virtual memory, 22
volatile keyword, 40
vulnerability, 7

security, 8

W
WARNPRINTF_BM macro, 52

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 63 of 77



the BISMON static source code analyzer

WAYLAND display server, 8
weather prediction, 40
web application, 22
web cookie, 45
web handler, 46
web interface, 18, 21, 45
web request, 45
web service, 39
web session, 45
web socket, 46
web timeout, 46
webdict_root, 46
webhandler_dict_object, 46
WebSocket, 48
wifi, 8
worker thread, 26
-Wstack-usage warning option, 39

X
X86 architecture, 8
X.509 protocol, 8
XHTML5, 46
XML, 46
X11 window system, 8

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 64 of 77



the BISMON static source code analyzer

References

H. Abelson, G. J. Sussman, and with Julie Sussman. Structure and Interpretation of Computer Programs. MIT
Press/McGraw-Hill, Cambridge, 2nd edition, 1996. ISBN 0-262-01153-0. URL https://mitpress.
mit.edu/sites/default/files/sicp/index.html.

N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman, R. Halstead, C. Hanson, C. T.
Haynes, E. Kohlbecker, D. Oxley, K. M. Pitman, G. J. Rozas, G. L. Steele, Jr., G. J. Sussman, M. Wand,
and H. Abelson. Revised 5th report on the algorithmic language Scheme. SIGPLAN Not., 33(9):26–76, Sept.
1998. ISSN 0362-1340. URL https://schemers.org/Documents/Standards/R5RS/.

A. Ahmad, F. Bouquet, E. Fourneret, and B. Legear. Model-based testing for internet of things systems. In
A. M. Memon, editor, Advances in Computers, volume 108, chapter 1, pages 1–58. Academic Press, 2018.
ISBN 978-0-12-815119-8. URL http://doi.org/10.1016/bs.adcom.2017.11.002.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2006. ISBN 0321486811.

S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson, J. Suh, S. Iqbal, P. N. Bennett,
K. Inkpen, et al. Guidelines for human-ai interaction. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, page 3. ACM, 2019. URL http://saleemaamershi.com/
papers/amershi.HAI.Guidelines.CHI.2019.pdf.

N. Amin and T. Rompf. LMS-Verify: Abstraction without regret for verified systems programming. In Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, pages
859–873, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4660-3. doi: 10.1145/3009837.3009867.
URL http://doi.acm.org/10.1145/3009837.3009867.

E. S. Andreasen, A. Møller, and B. B. Nielsen. Systematic approaches for increasing soundness and precision
of static analyzers. In Proceedings of the 6th ACM SIGPLAN International Workshop on State Of the Art in
Program Analysis, SOAP 2017, pages 31–36, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5072-3.
doi: 10.1145/3088515.3088521. URL http://doi.acm.org/10.1145/3088515.3088521.

K. R. Apt and M. Wallace. Constraint logic programming using ECLiPSe. Cambridge University Press, 2006.

R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Operating Systems: Three Easy Pieces. Arpaci-Dusseau
Books, 0.91 edition, May 2015. URL http://pages.cs.wisc.edu/~remzi/OSTEP/.

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, et al. The landscape of parallel computing research: A view from Berkeley.
Technical report, University of California at Berkeley, 2006. URL https://www2.eecs.berkeley.
edu/Pubs/TechRpts/2006/EECS-2006-183.pdf.

L. Atkinson. answer to: "how can a web server know all the tabs served by it..". Software Engineering forum,
2018. URL https://softwareengineering.stackexchange.com/a/378508/40065.

I. Attarzadeh and O. Siew Hock. Project management practices: Success versus failure. In 2008 International
Symposium on Information Technology, volume 1, pages 1–8, Aug 2008. doi: 10.1109/ITSIM.2008.4631634.

H. Attiya and J. Welch. Distributed computing: fundamentals, simulations, and advanced topics, volume 19.
John Wiley & Sons, 2004.

D. Bakken. Smart Grids: Clouds, Communications, Open Source, and Automation. CRC Press, 2014. ISBN
978-1-4822-0611-1.

T. Barrelfish. Barrelfish architecture overview, barrelfish technical note 000. Technical report, Technical report,
ETH Zurich, 2013.

P. Barry. Abstract syntax notation-one (asn. 1). In IEE Tutorial Colloquium on Formal Methods and Notations
Applicable to Telecommunications, pages 2–1. IET, 1992.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 65 of 77

https://mitpress.mit.edu/sites/default/files/sicp/index.html
https://mitpress.mit.edu/sites/default/files/sicp/index.html
https://schemers.org/Documents/Standards/R5RS/
http://doi.org/10.1016/bs.adcom.2017.11.002
http://saleemaamershi.com/papers/amershi.HAI.Guidelines.CHI.2019.pdf
http://saleemaamershi.com/papers/amershi.HAI.Guidelines.CHI.2019.pdf
http://doi.acm.org/10.1145/3009837.3009867
http://doi.acm.org/10.1145/3088515.3088521
http://pages.cs.wisc.edu/~remzi/OSTEP/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
https://softwareengineering.stackexchange.com/
https://softwareengineering.stackexchange.com/a/378508/40065


the BISMON static source code analyzer

P. Baudin, A. Pacalet, J. Raguideau, D. Schoen, and N. Williams. Caveat: a tool for software validation.
Proceedings International Conference on Dependable Systems and Networks, pages 537–, 2002.

P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevesto. ACSL: ANSI/ISO
C specification language (version 1.13). Technical report, CEA, INRIA, LRI, 2018. URL https:
//frama-c.com/download/acsl.pdf.

B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of object-oriented software: The KEY approach.
Springer-Verlag, 2007.

F. Belarbi. Vehicle to infrastructure communication based systems: their contribution to road traffic manage-
ment. Case of AIDA: the on-board traffic information system for motorways. PhD thesis, 2004.

B. Berkes, M. Kellil, D. Pariente, G. Everhardt, V. László, and N. Zilio. VESSEDIA approach for security
evaluation. Technical report, SLAB, 2018. URL https://vessedia.eu/downloads/VESSEDIA_
D4.2_approach_security_evaluation_PU_M18.pdf. deliverable of Vessedia H2020 project,
grant agreement No 731453.

K. Bhargavan, A. Delignat-Lavaud, C. Fournet, C. Hritcu, J. Protzenko, T. Ramananandro, A. Rastogi,
N. Swamy, P. Wang, S. Z. Béguelin, and J. K. Zinzindohoué. Verified low-level programming embedded
in F. CoRR, abs/1703.00053, 2017. URL http://arxiv.org/abs/1703.00053.

T. Bin Masood, J. Budin, M. Falk, G. Favelier, C. Garth, C. Gueunet, P. Guillou, L. Hofmann, P. Hristov, A. Ka-
makshidasan, C. Kappe, P. Klacansky, P. Laurin, J. Levine, J. Lukasczyk, D. Sakurai, M. Soler, P. Steneteg,
J. Tierny, W. Usher, J. Vidal, and M. Wozniak. An Overview of the Topology ToolKit. In TopoInVis, 2019.

D. Binkley. Source code analysis: A road map. In 2007 Future of Software Engineering, FOSE ’07, pages
104–119, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2829-5. doi: 10.1109/FOSE.
2007.27. URL https://doi.org/10.1109/FOSE.2007.27.

P. Biswas, A. Di Federico, S. A. Carr, P. Rajasekaran, S. Volckaert, Y. Na, M. Franz, and M. Payer. Venerable
variadic vulnerabilities vanquished. In Proceedings of the 26th USENIX Conference on Security Symposium,
SEC’17, pages 183–198, Berkeley, CA, USA, 2017. USENIX Association. ISBN 978-1-931971-40-9. URL
http://dl.acm.org/citation.cfm?id=3241189.3241205.

D. G. Bobrow and T. Winograd. An overview of krl, a knowledge representation language. Cognitive Science, 1
(1):3–46, 1977. doi: 10.1207/s15516709cog0101\_2. URL https://onlinelibrary.wiley.com/
doi/abs/10.1207/s15516709cog0101_2.

R. H. Bordini, A. E. F. Seghrouchni, K. Hindriks, B. Logan, and A. Ricci. Agent programming in the cognitive
era. Autonomous Agents and Multi-Agent Systems, 34, 2020. URL https://link.springer.com/
article/10.1007/s10458-020-09453-y.

J. Braun, C. Koch, J. L. Davis, and G. A. Miller. The magical number seven, plus or minus two: Some limits
on our capacity for processing information. Psychological Review, 63(2), March 1956.

F. P. Brooks, Jr. No silver bullet - essence and accidents of software engineering. Computer, 20(4):10–19, Apr.
1987. ISSN 0018-9162. doi: 10.1109/MC.1987.1663532. URL https://doi.org/10.1109/MC.
1987.1663532.

F. P. Brooks, Jr. The Mythical Man-month (Anniversary Ed.). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995. ISBN 0-201-83595-9.

P. Carle. MERING IV : un langage d’acteurs pour l’intelligence artificielle distribuée integrant objets et agents
par réflexivité compilatoire. PhD thesis, 1992. URL http://www.theses.fr/1992PA066429.
Thèse de doctorat dirigée par Ferber, Jacques Sciences appliquées Paris 6 1992.

X. Carpent, K. Eldefrawy, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik. Reconciling remote attestation
and safety-critical operation on simple iot devices. In Proceedings of the 55th Annual Design Automation

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 66 of 77

https://frama-c.com/download/acsl.pdf
https://frama-c.com/download/acsl.pdf
https://vessedia.eu/downloads/VESSEDIA_D4.2_approach_security_evaluation_PU_M18.pdf
https://vessedia.eu/downloads/VESSEDIA_D4.2_approach_security_evaluation_PU_M18.pdf
http://arxiv.org/abs/1703.00053
https://doi.org/10.1109/FOSE.2007.27
http://dl.acm.org/citation.cfm?id=3241189.3241205
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0101_2
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog0101_2
https://link.springer.com/article/10.1007/s10458-020-09453-y
https://link.springer.com/article/10.1007/s10458-020-09453-y
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1109/MC.1987.1663532
http://www.theses.fr/1992PA066429


the BISMON static source code analyzer

Conference, DAC ’18, pages 90:1–90:6, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5700-5. doi:
10.1145/3195970.3199853. URL http://doi.acm.org/10.1145/3195970.3199853.

V. G. Cerf and R. E. Icahn. A protocol for packet network intercommunication. ACM SIGCOMM Computer
Communication Review, 35(2):71–82, 2005.

G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W. Markstein. Register
allocation via coloring. Computer Languages, 6(1):47 – 57, 1981. ISSN 0096-0551. doi: https://doi.org/
10.1016/0096-0551(81)90048-5. URL http://www.sciencedirect.com/science/article/
pii/0096055181900485.

S. S. Chakkaravarthy, D. Sangeetha, and V. Vaidehi. A survey on malware analysis and mitigation tech-
niques. Computer Science Review, 32:1 – 23, 2019. ISSN 1574-0137. doi: https://doi.org/10.
1016/j.cosrev.2019.01.002. URL http://www.sciencedirect.com/science/article/pii/
S1574013718301114.

F. Chazal and B. Michel. An introduction to Topological Data Analysis: fundamental and practical aspects for
data scientists. arXiv e-prints, art. arXiv:1710.04019, Oct 2017. URL https://ui.adsabs.harvard.
edu/abs/2017arXiv171004019C.

C. Chen and S. Helal. A device-centric approach to a safer internet of things. In Proceedings of the 2011
International Workshop on Networking and Object Memories for the Internet of Things, NoME-IoT ’11,
pages 1–6, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0929-5. doi: 10.1145/2029932.2029934.
URL http://doi.acm.org/10.1145/2029932.2029934.

C. J. Cheney. A nonrecursive list compacting algorithm. Commun. ACM, 13(11):677–678, Nov. 1970.
ISSN 0001-0782. doi: 10.1145/362790.362798. URL http://doi.acm.org/10.1145/362790.
362798.

B. Christian and T. Griffiths. Algorithms to Live By: The Computer Science of Human Decisions. Picador,
2017. ISBN 978-1627790369. URL http://algorithmstoliveby.com/.

R. Clarke. Big data, big risks. Information Systems Journal, 26(1):77–90, 2016. URL https://doi.org/
10.1111/isj.12088.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, 3rd
edition, 2009. ISBN 0262033844, 9780262033848.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 238–252, Los Angeles, California,
1977. ACM Press, New York, NY.

P. Cousot and R. Cousot. Abstract interpretation: Past, present and future. In Proceedings of the Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, pages 2:1–2:10, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2886-9. doi: 10.1145/2603088.2603165. URL http:
//doi.acm.org/10.1145/2603088.2603165.

P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C: A software analysis
perspective. In Proceedings of the 10th International Conference on Software Engineering and Formal Meth-
ods, SEFM’12, pages 233–247, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-33825-0. doi:
10.1007/978-3-642-33826-7_16. URL http://dx.doi.org/10.1007/978-3-642-33826-7_
16.

C. J. Date. Database in Depth: Relational Theory for Practitioners. O’Reilly Media, Inc., 2005. ISBN
0596100124.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 67 of 77

http://doi.acm.org/10.1145/3195970.3199853
http://www.sciencedirect.com/science/article/pii/0096055181900485
http://www.sciencedirect.com/science/article/pii/0096055181900485
http://www.sciencedirect.com/science/article/pii/S1574013718301114
http://www.sciencedirect.com/science/article/pii/S1574013718301114
https://ui.adsabs.harvard.edu/abs/2017arXiv171004019C
https://ui.adsabs.harvard.edu/abs/2017arXiv171004019C
http://doi.acm.org/10.1145/2029932.2029934
http://doi.acm.org/10.1145/362790.362798
http://doi.acm.org/10.1145/362790.362798
http://algorithmstoliveby.com/
https://doi.org/10.1111/isj.12088
https://doi.org/10.1111/isj.12088
http://doi.acm.org/10.1145/2603088.2603165
http://doi.acm.org/10.1145/2603088.2603165
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-642-33826-7_16


the BISMON static source code analyzer

C. J. Date. SQL and Relational Theory: How to Write Accurate SQL Code. O’Reilly Media, Inc., 2011. ISBN
1449316409, 9781449316402.

T. David, R. Guerraoui, and V. Trigonakis. Everything you always wanted to know about synchronization but
were afraid to ask. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pages 33–48, 2013.

D. J. Dean. The Visual Development of GCC Plug-ins with GDE. PhD thesis, The Graduate School, Stony
Brook University: Stony Brook, NY., 2009.

A. Dearle, G. N. C. Kirby, and R. Morrison. Orthogonal persistence revisited. In ICOODB. LNCS 5936, 2009.
URL https://doi.org/10.1007/978-3-642-14681-7_1.

A. Dearle, G. N. C. Kirby, and R. Morrison. Orthogonal persistence revisited. CoRR, abs/1006.3448, 2010.
URL http://arxiv.org/abs/1006.3448.

M. Delahaye, N. Kosmatov, and J. Signoles. Common specification language for static and dynamic analysis
of C programs. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, pages
1230–1235, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1656-9. doi: 10.1145/2480362.2480593.
URL http://doi.acm.org/10.1145/2480362.2480593.

J. Delons, N. Coulombel, and F. Leurent. PIRANDELLO an integrated transport and land-use model for the
paris area. Technical report, 2008.

R. Di Cosmo and D. Nora. Le Hold-up Planétaire: la face cachée de MicroSoft [the planetary hold-up: the
hidden face of MicroSoft]. Calman-Levy, 1998. ISBN 2-7021-2923-4. URL http://www.dicosmo.
org/HoldUp/. [French book, out of print, but downloadable].

M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali. Cloud computing: Distributed internet
computing for it and scientific research. IEEE Internet computing, 13(5):10–13, 2009.

V. Donzeau-Gouge, G. Huet, B. Lang, and G. Kahn. Programming environments based on structured editors
: the MENTOR experience. Research Report RR-0026, INRIA, 1980. URL https://hal.inria.fr/
inria-00076535.

F. Doucet, S. Shukla, and R. Gupta. Introspection in system-level language frameworks: Meta-level vs.
integrated. In Proceedings of the Conference on Design, Automation and Test in Europe - Volume 1,
DATE ’03, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1870-2. URL http:
//dl.acm.org/citation.cfm?id=789083.1022756.

J. Doyle. Expert systems and the" myth" of symbolic reasoning. IEEE Transactions on Software Engineering,
11:1386–1390, 1985.

P. Dragicevic, Y. Jansen, A. Sarma, M. Kay, and F. Chevalier. Increasing the transparency of research papers
with explorable multiverse analyses. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI 19, pages 65:1–65:15, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-5970-
2. doi: 10.1145/3290605.3300295. URL http://doi.acm.org/10.1145/3290605.3300295.

U. Drepper. How to write shared libraries. Technical report, Intel?, December 2011. URL https:
//software.intel.com/sites/default/files/m/a/1/e/dsohowto.pdf.

V. Echeverria, R. Martinez-Maldonado, and S. Buckingham Shum. Towards collaboration translucence: Giving
meaning to multimodal group data. In Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems, page 39. ACM, 2019. URL http://simon.buckinghamshum.net/wp-content/
uploads/2019/02/CollabTranslucence_CHI2019.pdf.

J. Eisl, M. Grimmer, D. Simon, T. Würthinger, and H. Mössenböck. Trace-based register allocation in a jit
compiler. In Proceedings of the 13th International Conference on Principles and Practices of Programming
on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ 16, New York, NY, USA, 2016.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 68 of 77

https://doi.org/10.1007/978-3-642-14681-7_1
http://arxiv.org/abs/1006.3448
http://doi.acm.org/10.1145/2480362.2480593
http://www.dicosmo.org/HoldUp/
http://www.dicosmo.org/HoldUp/
https://hal.inria.fr/inria-00076535
https://hal.inria.fr/inria-00076535
http://dl.acm.org/citation.cfm?id=789083.1022756
http://dl.acm.org/citation.cfm?id=789083.1022756
http://doi.acm.org/10.1145/3290605.3300295
https://software.intel.com/sites/default/files/m/a/1/e/dsohowto.pdf
https://software.intel.com/sites/default/files/m/a/1/e/dsohowto.pdf
http://simon.buckinghamshum.net/wp-content/uploads/2019/02/CollabTranslucence_CHI2019.pdf
http://simon.buckinghamshum.net/wp-content/uploads/2019/02/CollabTranslucence_CHI2019.pdf


the BISMON static source code analyzer

Association for Computing Machinery. ISBN 9781450341356. doi: 10.1145/2972206.2972211. URL
https://doi.org/10.1145/2972206.2972211.

T. Fitz, M. Theiler, and K. Smarsly. A metamodel for cyber-physical systems. Advanced Engineering
Informatics, 41:100930, 2019. ISSN 1474-0346. doi: https://doi.org/10.1016/j.aei.2019.100930. URL
http://www.sciencedirect.com/science/article/pii/S1474034618306803.

P. Flach. Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University
Press, 2012. doi: 10.1017/CBO9780511973000.

J.-M. Fouet. Utilisation de connaissances pour améliorer l’utilisation de connaissances : la machine Gosseyn.
PhD thesis, Université Paris 6, 1987. URL http://www.theses.fr/1987PA066378. [using knowl-
edge to improve usage of knowledge: the GOSSEYN machine].

J.-M. Fouet and B. Starynkevitch. Describing control. Technical Report FR8801379/CEA-CONF–9239,
CEA, august 1987. URL https://inis.iaea.org/collection/NCLCollectionStore/
_Public/19/059/19059867.pdf.

Free Software Foundation. GCC runtime library exception, 2009. URL https://www.gnu.org/
licenses/gcc-exception-3.1.en.html.

Y. Futamura. Partial evaluation of computation process - an approach to a compiler-compiler. Higher Order
Symbol. Comput., 12(4):381–391, Dec. 1999. ISSN 1388-3690. doi: 10.1023/A:1010095604496. URL
https://doi.org/10.1023/A:1010095604496.

D. M. Gabbay and P. Smets. Handbook of defeasible reasoning and uncertainty management systems: algo-
rithms for uncertainty and defeasible reasoning, volume 5. Springer Science & Business Media, 2013. ISBN
0-7923-6672-7.

GCC Community. GCC internals, 2018. URL http://gcc.gnu.org/onlinedocs/gccint/.

S. Gerber. Authorization, Protection, and Allocation of Memory in a Large System. PhD thesis, ETH Zurich,
2018.

J. Giceva, G. Zellweger, G. Alonso, and T. Rosco. Customized OS support for data-processing. In Proceedings
of the 12th International Workshop on Data Management on New Hardware, pages 1–6, 2016.

A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1983. ISBN 0-201-11371-6.

I. Gomes, P. Morgado, T. Gomes, and R. B. T. Moreira. An overview on the static code analysis ap-
proach in software development. 2009. URL https://www.semanticscholar.org/paper/
An-overview-on-the-Static-Code-Analysis-approach-in-Gomes-Morgado/
ce3c584c906eea668954f6a1a0ddbb295c6ec5a2.

K. Goseva-Popstojanova and A. Perhinschi. On the capability of static code analysis to detect security vulner-
abilities. Information and Software Technology, 68:18–33, 2015.

E. Goubault and E. Haucourt. A practical application of geometric semantics to static analysis of concurrent
programs. In International Conference on Concurrency Theory, pages 503–517. Springer, 2005.

E. Goubault and S. Putot. Static analysis of finite precision computations. In International Workshop on
Verification, Model Checking, and Abstract Interpretation, pages 232–247. Springer, 2011.

D. Graeber and A. Cerutti. Bullshit jobs. Simon & Schuster New York, NY, 2018. URL https://en.
wikipedia.org/wiki/Bullshit_Jobs.

P. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Modeling web interactions. In P. Degano,
editor, Programming Languages and Systems, pages 238–252, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg. ISBN 978-3-540-36575-4.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 69 of 77

https://doi.org/10.1145/2972206.2972211
http://www.sciencedirect.com/science/article/pii/S1474034618306803
http://www.theses.fr/1987PA066378
https://inis.iaea.org/collection/NCLCollectionStore/_Public/19/059/19059867.pdf
https://inis.iaea.org/collection/NCLCollectionStore/_Public/19/059/19059867.pdf
https://www.gnu.org/licenses/gcc-exception-3.1.en.html
https://www.gnu.org/licenses/gcc-exception-3.1.en.html
https://doi.org/10.1023/A:1010095604496
http://gcc.gnu.org/onlinedocs/gccint/
https://www.semanticscholar.org/paper/An-overview-on-the-Static-Code-Analysis-approach-in-Gomes-Morgado/ce3c584c906eea668954f6a1a0ddbb295c6ec5a2
https://www.semanticscholar.org/paper/An-overview-on-the-Static-Code-Analysis-approach-in-Gomes-Morgado/ce3c584c906eea668954f6a1a0ddbb295c6ec5a2
https://www.semanticscholar.org/paper/An-overview-on-the-Static-Code-Analysis-approach-in-Gomes-Morgado/ce3c584c906eea668954f6a1a0ddbb295c6ec5a2
https://en.wikipedia.org/wiki/Bullshit_Jobs
https://en.wikipedia.org/wiki/Bullshit_Jobs


the BISMON static source code analyzer

D. Greenaway, J. Lim, J. Andronick, and G. Klein. Don’t sweat the small stuff: Formal verification of C code
without the pain. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, pages 429–439, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2784-
8. doi: 10.1145/2594291.2594296. URL http://doi.acm.org/10.1145/2594291.2594296.

R. Guerraoui and P. Kuznetsov. Algorithms for Concurrent Systems. EPFL press, 2018. ISBN 978-2-88915-
283-4.

D. Guilbaud, E. Goubault, A. Pacalet, B. Starynkévitch, and F. Védrine. A simple abstract interpreter for
threat detection and test case generation. In WAPATV workshop. ICSE, 2001. URL http://www.lix.
polytechnique.fr/~goubault/papers/icse01.pdf.

E. Gulay and A. Lucero. Integrated workflows: Generating feedback between digital and physical realms.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 19, pages
60:1–60:15, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-5970-2. doi: 10.1145/3290605.3300290.
URL http://doi.acm.org/10.1145/3290605.3300290.

J. Gustedt. MODERN C. Manning Publications Company, 2019. URL https://modernc.gforge.
inria.fr/.

H.-J. Happel and S. Seedorf. Applications of ontologies in software engineering. In Proc. of Workshop on
Sematic Web Enabled Software Engineering"(SWESE) on the ISWC, pages 5–9. Citeseer, 2006.

I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan. The rise of big data on cloud
computing: Review and open research issues. Information systems, 47:98–115, 2015.

D. Helbing, B. S. Frey, G. Gigerenzer, E. Hafen, M. Hagner, Y. Hofstetter, J. Van Den Hoven, R. V. Zicari,
and A. Zwitter. Will democracy survive big data and artificial intelligence? In Towards Digital Enlight-
enment, pages 73–98. Springer, 2019. URL https://link.springer.com/chapter/10.1007/
978-3-319-90869-4_7.

D. R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books, Inc., New York, NY, USA,
1979. ISBN 0465026850.

G. J. Holzmann. The power of 10: rules for developing safety-critical code. Computer, 39(6):95–99, 2006.
URL https://ieeexplore.ieee.org/document/1642624.

U. Huws. iCapitalism and the Cybertariat: Contradictions of the digital economy.
Monthly review, 66(8):42, 2015. URL http://monthlyreview.org/2015/01/01/
icapitalism-and-the-cybertariat/.

M. Héder. From NASA to EU: the evolution of the TRL scale in public sector innovation. Innovation Journal,
22(2):1–23, 2017. URL https://core.ac.uk/download/pdf/94310086.pdf.

ISO. C11 Standard. 2011a. URL http://www.open-std.org/jtc1/sc22/wg14/www/docs/
n1570.pdf. ISO/IEC 9899:2011.

ISO. C++11 Standard. 2011b. URL https://github.com/cplusplus/draft/blob/master/
papers/n3337.pdf. ISO/IEC 9899:2011.

I. Jacobs and L. Rideau-Gallot. a CENTAUR tutorial. Technical Report RT-140, INRIA Sophia-Antipolis, july
1992. URL ftp://www.inria.fr/pub/rapports/RT-140.ps.

A. K. Jain and S. Z. Li. Handbook of face recognition. Springer, 2011.

R. Jhala and R. Majumdar. Software model checking. ACM Comput. Surv., 41(4):21:1–21:54, Oct. 2009. ISSN
0360-0300. doi: 10.1145/1592434.1592438. URL http://doi.acm.org/10.1145/1592434.
1592438.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 70 of 77

http://doi.acm.org/10.1145/2594291.2594296
http://www.lix.polytechnique.fr/~goubault/papers/icse01.pdf
http://www.lix.polytechnique.fr/~goubault/papers/icse01.pdf
http://doi.acm.org/10.1145/3290605.3300290
https://modernc.gforge.inria.fr/
https://modernc.gforge.inria.fr/
https://link.springer.com/chapter/10.1007/978-3-319-90869-4_7
https://link.springer.com/chapter/10.1007/978-3-319-90869-4_7
https://ieeexplore.ieee.org/document/1642624
http://monthlyreview.org/2015/01/01/icapitalism-and-the-cybertariat/
http://monthlyreview.org/2015/01/01/icapitalism-and-the-cybertariat/
https://core.ac.uk/download/pdf/94310086.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://github.com/cplusplus/draft/blob/master/papers/n3337.pdf
https://github.com/cplusplus/draft/blob/master/papers/n3337.pdf
ftp://www.inria.fr/pub/rapports/RT-140.ps
http://doi.acm.org/10.1145/1592434.1592438
http://doi.acm.org/10.1145/1592434.1592438


the BISMON static source code analyzer

R. Jones, A. Hosking, and E. Moss. The Garbage Collection Handbook: The Art of Automatic Mem-
ory Management. Chapman & Hall/CRC, 2nd edition, 2016. ISBN 1420082795, 9781420082791. URL
http://gchandbook.org/.

T. Karvinen, K. Karvinen, and V. Valtokari. Make: sensors: a hands-on primer for monitoring the real world
with ARDUINO and RASPBERRY PI. Maker Media, Inc., 2014.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall Professional Technical
Reference, 2nd edition, 1988. ISBN 0131103709.

M. Kerrisk. The Linux Programming Interface: A Linux and UNIX System Programming Handbook. No Starch
Press, San Francisco, CA, USA, 1st edition, 2010. ISBN 1593272200, 9781593272203.

A. Khalilian, A. Baraani-Dastjerdi, and B. Zamani. CGenProg: Adaptation of cartesian genetic programming
with migration and opposite guesses for automatic repair of software regression faults. Expert Systems with
Applications, 169:114503, 2021. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2020.114503. URL
http://www.sciencedirect.com/science/article/pii/S0957417420311477.

A. A. Khan, J. Keung, M. Niazi, S. Hussain, and M. Shameem. Gsepim: A roadmap for software process
assessment and improvement in the domain of global software development. Journal of Software: Evolution
and Process, 31(1), 2019. doi: 10.1002/smr.1988. URL https://onlinelibrary.wiley.com/
doi/abs/10.1002/smr.1988. e1988 JSME-18-0098.R1.

D. Khandal and S. Jain. Li-fi (light fidelity): The future technology in wireless communication. International
Journal of Information & Computation Technology, 4(16):1–7, 2014.

B. Kiss, N. Kosmatov, D. Pariente, and A. Puccetti. Combining static and dynamic analyses for vulnerability
detection: illustration on HEARTBLEED. In Haifa Verification Conference, pages 39–50. Springer, 2015.
URL http://nikolai.kosmatov.free.fr/publications/kiss_kpp_hvc_2015.pdf.

B. Klimt and Y. Yang. The ENRON corpus: A new dataset for email classification research. In European
Conference on Machine Learning, pages 217–226. Springer, 2004.

M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, et al. IMPALA: A modern, open-source sql engine for hadoop. In Cidr, volume 1, page 9, 2015.

Y. Kou and C. M. Gray. A practice-led account of the conceptual evolution of UX knowl-
edge. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Sys-
tems, page 49. ACM, 2019. URL https://www.researchgate.net/profile/
Yubo_Kou/publication/330026000_A_Practice-Led_Account_of_the_
Conceptual_Evolution_of_UX_Knowledge/links/5c2a7990a6fdccfc7074f0e2/
A-Practice-Led-Account-of-the-Conceptual-Evolution-of-UX-Knowledge.pdf.

R. Kumar and R. Goyal. On cloud security requirements, threats, vulnerabilities and countermeasures:
A survey. Computer Science Review, 33:1 – 48, 2019. ISSN 1574-0137. doi: https://doi.org/10.
1016/j.cosrev.2019.05.002. URL http://www.sciencedirect.com/science/article/pii/
S1574013718302065.

D. Lee, H. Moon, S. Oh, and D. Park. mIoT: Metamorphic iot platform for on-demand hardware replace-
ment in large-scaled iot applications. Sensors, 20(12):3337, 2020. URL https://www.mdpi.com/
1424-8220/20/12/3337.

R. Lee, M. Assante, and T. Conway. Analysis of the cyber attack on the ukrainian power grid. Electricity In-
formation Sharing and Analysis Center (E-ISAC), 388, 2016. URL https://ics.sans.org/media/
E-ISAC_SANS_Ukraine_DUC_5.pdf.

D. B. Lenat. Eurisko: A program that learns new heuristics and domain concepts. Artif. Intell., 21(1-2):61–98,
Mar. 1983. ISSN 0004-3702. doi: 10.1016/S0004-3702(83)80005-8. URL http://dx.doi.org/10.
1016/S0004-3702(83)80005-8.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 71 of 77

http://gchandbook.org/
http://www.sciencedirect.com/science/article/pii/S0957417420311477
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1988
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1988
http://nikolai.kosmatov.free.fr/publications/kiss_kpp_hvc_2015.pdf
https://www.researchgate.net/profile/Yubo_Kou/publication/330026000_A_Practice-Led_Account_of_the_Conceptual_Evolution_of_UX_Knowledge/links/5c2a7990a6fdccfc7074f0e2/A-Practice-Led-Account-of-the-Conceptual-Evolution-of-UX-Knowledge.pdf
https://www.researchgate.net/profile/Yubo_Kou/publication/330026000_A_Practice-Led_Account_of_the_Conceptual_Evolution_of_UX_Knowledge/links/5c2a7990a6fdccfc7074f0e2/A-Practice-Led-Account-of-the-Conceptual-Evolution-of-UX-Knowledge.pdf
https://www.researchgate.net/profile/Yubo_Kou/publication/330026000_A_Practice-Led_Account_of_the_Conceptual_Evolution_of_UX_Knowledge/links/5c2a7990a6fdccfc7074f0e2/A-Practice-Led-Account-of-the-Conceptual-Evolution-of-UX-Knowledge.pdf
https://www.researchgate.net/profile/Yubo_Kou/publication/330026000_A_Practice-Led_Account_of_the_Conceptual_Evolution_of_UX_Knowledge/links/5c2a7990a6fdccfc7074f0e2/A-Practice-Led-Account-of-the-Conceptual-Evolution-of-UX-Knowledge.pdf
http://www.sciencedirect.com/science/article/pii/S1574013718302065
http://www.sciencedirect.com/science/article/pii/S1574013718302065
https://www.mdpi.com/1424-8220/20/12/3337
https://www.mdpi.com/1424-8220/20/12/3337
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
http://dx.doi.org/10.1016/S0004-3702(83)80005-8
http://dx.doi.org/10.1016/S0004-3702(83)80005-8


the BISMON static source code analyzer

D. B. Lenat and R. V. Guha. The evolution of cycl, the cyc representation language. SIGART Bull., 2(3):84–87,
June 1991. ISSN 0163-5719. doi: 10.1145/122296.122308. URL http://doi.acm.org/10.1145/
122296.122308.

J. Lerner and J. Tirole. The simple economics of open source. Working Paper 7600, National Bureau of
Economic Research, March 2000. URL http://www.nber.org/papers/w7600.

X. Leroy. A modular module system. Journal of Functional Programming, 10(3):269–303, 2000.

X. Leroy et al. Ocaml site, 2018. URL http://ocaml.org/.

G. N. Levine. Defining defects, errors, and service degradations. SIGSOFT Softw. Eng. Notes, 34(2):1–14, Feb.
2009. ISSN 0163-5948. doi: 10.1145/1507195.1507205. URL http://doi.acm.org/10.1145/
1507195.1507205.

H. Lipford, T. Thomas, B. Chu, and E. Murphy-Hill. Interactive code annotation for security vulnerability
detection. In Proceedings of the 2014 ACM Workshop on Security Information Workers, SIW ’14, pages
17–22, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3152-4. doi: 10.1145/2663887.2663901. URL
http://doi.acm.org/10.1145/2663887.2663901.

V. László, G. Eberhardt, J. Burghardt, J. Gerlach, F. Stornig, E. Querrec, I. Greiro Santos, and
A. M. Blanchar. Security requirements for connected medium security-critical applications (Vessedia
D1.1). Technical report, SLAB, 2017. URL https://vessedia.eu/downloads/VESSEDIA-D1.
1-Security-requirements-PU-M09.pdf. deliverable of Vessedia H2020 project, grant agreement
No 731453.

I. G. Maglogiannis. Emerging artificial intelligence applications in computer engineering: real world AI
systems with applications in ehealth, hci, information retrieval and pervasive technologies, volume 160. Ios
Press, 2007. ISBN 978-1-58603-780-2.

C. Maria. Persistent cohomology. In GUDHI User and Reference Manual. GUDHI Editorial Board,
3.2.0 edition, 2020. URL https://gudhi.inria.fr/doc/3.2.0/group__persistent_
_cohomology.html.

C. Maria, P. Dlotko, V. Rouvreau, and M. Glisse. Rips complex. In GUDHI User and Reference Man-
ual. GUDHI Editorial Board, 3.2.0 edition, 2020. URL https://gudhi.inria.fr/doc/3.2.0/
group__rips__complex.html.

D. McLaren and J. Agyeman. Sharing cities: a case for truly smart and sustainable cities. MIT press, 2015.

M. Medwed. Iot security challenges and ways forward. In Proceedings of the 6th International Workshop on
Trustworthy Embedded Devices, TrustED ’16, pages 55–55, New York, NY, USA, 2016. ACM. ISBN 978-
1-4503-4567-5. doi: 10.1145/2995289.2995298. URL http://doi.acm.org/10.1145/2995289.
2995298.

K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R. N. M. Watson, and P. Sewell. Into the
depths of C: Elaborating the de facto standards. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’16, pages 1–15, New York, NY, USA, 2016.
ACM. ISBN 978-1-4503-4261-2. URL http://doi.acm.org/10.1145/2908080.2908081.

A. Miné and D. Delmas. Towards an industrial use of sound static analysis for the verification of concurrent
embedded avionics software. In Proceedings of the 12th International Conference on Embedded Software,
EMSOFT ’15, pages 65–74, Piscataway, NJ, USA, 2015. IEEE Press. ISBN 978-1-4673-8079-9. URL
http://dl.acm.org/citation.cfm?id=2830865.2830873.

A. Miné, A. Ouadjaout, and M. Journault. Design of a modular platform for static analysis. In
Proc. 9th Workshop on Tools for Automatic Program Analysis, august 2018. URL https://hal.
archives-ouvertes.fr/hal-01870001.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 72 of 77

http://doi.acm.org/10.1145/122296.122308
http://doi.acm.org/10.1145/122296.122308
http://www.nber.org/papers/w7600
http://ocaml.org/
http://doi.acm.org/10.1145/1507195.1507205
http://doi.acm.org/10.1145/1507195.1507205
http://doi.acm.org/10.1145/2663887.2663901
https://vessedia.eu/downloads/VESSEDIA-D1.1-Security-requirements-PU-M09.pdf
https://vessedia.eu/downloads/VESSEDIA-D1.1-Security-requirements-PU-M09.pdf
https://gudhi.inria.fr/doc/3.2.0/group__persistent__cohomology.html
https://gudhi.inria.fr/doc/3.2.0/group__persistent__cohomology.html
https://gudhi.inria.fr/doc/3.2.0/group__rips__complex.html
https://gudhi.inria.fr/doc/3.2.0/group__rips__complex.html
http://doi.acm.org/10.1145/2995289.2995298
http://doi.acm.org/10.1145/2995289.2995298
http://doi.acm.org/10.1145/2908080.2908081
http://dl.acm.org/citation.cfm?id=2830865.2830873
https://hal.archives-ouvertes.fr/hal-01870001
https://hal.archives-ouvertes.fr/hal-01870001


the BISMON static source code analyzer

M. Mitchell, J. Oldham, and A. Samuel. Advanced Linux Programming. New Riders Publishing, 2001. ISBN
0-7357-1043-0. URL http://www.makelinux.net/alp/.

B. Myers, S. E. Hudson, R. Pausch, and R. Pausch. Past, present, and future of user interface software tools.
ACM Trans. Comput.-Hum. Interact., 7(1):3–28, Mar. 2000. ISSN 1073-0516. doi: 10.1145/344949.344959.
URL http://www.cs.cmu.edu/~amulet/papers/futureofhciACM.pdf.

M. Nadeem, B. J. Williams, and E. B. Allen. High false positive detection of security vulnerabilities: A
case study. In Proceedings of the 50th Annual Southeast Regional Conference, ACM-SE ’12, pages 359–360,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1203-5. doi: 10.1145/2184512.2184604. URL http:
//doi.acm.org/10.1145/2184512.2184604.

F. Nagle. Learning by contributing: Gaining competitive advantage through contribution to crowdsourced
public goods. Organization Science, 29(4):569–587, 2018. URL https://doi.org/10.1287/orsc.
2018.1202.

A. D. Nicola, M. Missikoff, and R. Navigli. A software engineering approach to ontology building. Information
Systems, 34(2):258 – 275, 2009. ISSN 0306-4379. doi: https://doi.org/10.1016/j.is.2008.07.002. URL
http://www.sciencedirect.com/science/article/pii/S0306437908000628.

R. Nouira and J.-M. Fouet. A knowledge based tool for the incremental construction, validation and refinement
of large knowledge bases. In Workshop proceedings ECAI96. Citeseer, 1996. URL http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.50.8230&rep=rep1&type=pdf.

C. O’Neil. Weapons of math destruction: How big data increases inequality and threatens democracy. Broad-
way Books, 2016. ISBN 9780553418811. URL https://en.wikipedia.org/wiki/Weapons_
of_Math_Destruction.

M. Payer. How memory safety violations enable exploitation of programs. In P. Larsen and A.-R. Sadeghi,
editors, The Continuing Arms Race, pages 1–23. Association for Computing Machinery and Morgan &#38;
Claypool, New York, NY, USA, 2018. ISBN 978-1-97000-183-9. doi: 10.1145/3129743.3129745. URL
https://doi.org/10.1145/3129743.3129745.

D. Peleg. Distributed computing. SIAM Monographs on discrete mathematics and applications, 5:1–1, 2000.

H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, and Y. Acar. Vccfinder: Finding
potential vulnerabilities in open-source projects to assist code audits. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, pages 426–437, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3832-5. doi: 10.1145/2810103.2813604. URL http://doi.acm.
org/10.1145/2810103.2813604.

B. C. Pierce. Types and programming languages. MIT press, 2002. ISBN 0-262-16209-1.

J. Pitrat. Méta-connaissances: futur de l’intelligence artificielle [meta-knowledge, future of artificial intelligence].
Hermès, 1990. ISBN 9782866012472. [French book].

J. Pitrat. Implementation of a reflective system. Future Generation Computer Systems, 12(2):235 – 242,
1996. ISSN 0167-739X. doi: https://doi.org/10.1016/0167-739X(96)00011-8. URL http://www.
sciencedirect.com/science/article/pii/0167739X96000118.

J. Pitrat. De la machine à l’intelligence [from machine to intelligence]. Hermès, 2000. ISBN 978-2866014742.

J. Pitrat. A step toward an artificial artificial intelligence scientist. Technical report, CNRS
and LIP6 Université Paris, 2009a. URL https://pdfs.semanticscholar.org/2117/
9600b3f05c0af399f9acbfc6e7b6d24daf03.pdf.

J. Pitrat. Artificial Beings: The Conscience of a Conscious Machine. Wiley ISTE, 2009b. ISBN 978-1-848-
21101-8.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 73 of 77

http://www.makelinux.net/alp/
http://www.cs.cmu.edu/~amulet/papers/futureofhciACM.pdf
http://doi.acm.org/10.1145/2184512.2184604
http://doi.acm.org/10.1145/2184512.2184604
https://doi.org/10.1287/orsc.2018.1202
https://doi.org/10.1287/orsc.2018.1202
http://www.sciencedirect.com/science/article/pii/S0306437908000628
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.8230&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.8230&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/Weapons_of_Math_Destruction
https://en.wikipedia.org/wiki/Weapons_of_Math_Destruction
https://doi.org/10.1145/3129743.3129745
http://doi.acm.org/10.1145/2810103.2813604
http://doi.acm.org/10.1145/2810103.2813604
http://www.sciencedirect.com/science/article/pii/0167739X96000118
http://www.sciencedirect.com/science/article/pii/0167739X96000118
https://pdfs.semanticscholar.org/2117/9600b3f05c0af399f9acbfc6e7b6d24daf03.pdf
https://pdfs.semanticscholar.org/2117/9600b3f05c0af399f9acbfc6e7b6d24daf03.pdf


the BISMON static source code analyzer

J. Pitrat. My view on artificial intelligence. blog, 2013-2019. URL http://
bootstrappingartificialintelligence.fr/WordPress3/.

G. Polito, S. Ducasse, L. Fabresse, N. Bouraqadi, and B. van Ryseghem. Bootstrapping reflective systems: The
case of pharo. Science of Computer Programming, 96:141 – 155, 2014. ISSN 0167-6423. doi: https://doi.
org/10.1016/j.scico.2013.10.008. URL http://www.sciencedirect.com/science/article/
pii/S0167642313002797. Special issue on Advances in Smalltalk based Systems.

S. Pop. The SSA Representation Framework: Semantics, Analyses and GCC Implementation. Thèse de doctorat
de l’École des mines de paris, École Nationale Supérieure des Mines de Paris, Dec. 2006. URL https:
//pastel.archives-ouvertes.fr/pastel-00002281.

F. Pérez, T. Ziad, and C. Cetina. Utilizing automatic query reformulations as genetic operations to improve
feature location in software models. IEEE Transactions on Software Engineering, 2020. URL https:
//hal.sorbonne-universite.fr/hal-02852488/.

C. Queinnec. Lisp in Small Pieces. Cambridge University Press, New York, NY, USA, 1996. ISBN 0-521-
56247-3. URL https://pages.lip6.fr/Christian.Queinnec/WWW/LiSP.html.

C. Queinnec. Continuations and web servers. Higher Order Symbol. Comput., 17(4):277–295, Dec. 2004.
ISSN 1388-3690. doi: 10.1007/s10990-004-4866-z. URL https://core.ac.uk/download/pdf/
81910787.pdf.

P. Raj. Chapter one - a detailed analysis of NoSQL and NewSQL databases for bigdata analytics and distributed
computing. In P. Raj and G. C. Deka, editors, A Deep Dive into NoSQL Databases: The Use Cases and
Applications, volume 109 of Advances in Computers, pages 1 – 48. Elsevier, 2018. doi: https://doi.org/
10.1016/bs.adcom.2018.01.002. URL http://www.sciencedirect.com/science/article/
pii/S0065245818300020.

E. S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolu-
tionary. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001. ISBN 0596001088.

J. C. Reynolds. The discoveries of continuations. Lisp & Symbolic Computation, 6(3-4):233–248, Nov. 1993.
ISSN 0892-4635. doi: 10.1007/BF01019459. URL http://dx.doi.org/10.1007/BF01019459.

C. Rich and R. C. Waters. Readings in artificial intelligence and software engineering. Morgan Kaufmann,
2014.

P. Rodriguez, M. Mäntylä, M. Oivo, L. E. Lwakaratare, P. Seppänen, and P. Kuvaja. Advances in using agile
and lean processes for software development. In A. M. Memon, editor, Advances in Computers, volume 113,
chapter 4, pages 135–221. Academic Press, 2018. ISBN 978-0-12-816070-1. URL https://doi.org/
10.1016/bs.adcom.2018.03.014.

I. Rus, M. Lindvall, and S. Sinha. Knowledge management in software engineering. IEEE software, 19(3):
26–38, 2002.

D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge university press, 2003.
ISBN 0-521-7787177-9.

S. Scargall. Programming Persistent Memory: A Comprehensive Guide for Developers. Springer Nature, 2020.
ISBN 978-1-4842-4932-1.

C. E. Schafmeister. CLASP - a Common Lisp that interoperates with C++ and uses the LLVM backend. In
Proceedings of the 8th European Lisp Symposium on European Lisp Symposium, ELS2015, 2015.

C. E. Schafmeister. CANDO: A compiled programming language for computer-aided nanomaterial design and
optimization based on Clasp Common Lisp. In Proceedings of the 9th European Lisp Symposium on Euro-
pean Lisp Symposium, ELS2016, pages 9:75–9:82. European Lisp Scientific Activities Association, 2016.
ISBN 978-2-9557474-0-7. URL http://dl.acm.org/citation.cfm?id=3005729.3005738.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 74 of 77

http://bootstrappingartificialintelligence.fr/WordPress3/
http://bootstrappingartificialintelligence.fr/WordPress3/
http://www.sciencedirect.com/science/article/pii/S0167642313002797
http://www.sciencedirect.com/science/article/pii/S0167642313002797
https://pastel.archives-ouvertes.fr/pastel-00002281
https://pastel.archives-ouvertes.fr/pastel-00002281
https://hal.sorbonne-universite.fr/hal-02852488/
https://hal.sorbonne-universite.fr/hal-02852488/
https://pages.lip6.fr/Christian.Queinnec/WWW/LiSP.html
https://core.ac.uk/download/pdf/81910787.pdf
https://core.ac.uk/download/pdf/81910787.pdf
http://www.sciencedirect.com/science/article/pii/S0065245818300020
http://www.sciencedirect.com/science/article/pii/S0065245818300020
http://dx.doi.org/10.1007/BF01019459
https://doi.org/10.1016/bs.adcom.2018.03.014
https://doi.org/10.1016/bs.adcom.2018.03.014
http://dl.acm.org/citation.cfm?id=3005729.3005738


the BISMON static source code analyzer

B. Schlich. Model checking of software for microcontrollers. ACM Trans. Embed. Comput. Syst., 9(4):
36:1–36:27, Apr. 2010. ISSN 1539-9087. doi: 10.1145/1721695.1721702. URL http://doi.acm.
org/10.1145/1721695.1721702.

A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris, and R. Isaacs. Embracing diversity in
the barrelfish manycore operating system. In Proceedings of the Workshop on Managed Many-Core Systems,
volume 27, 2008.

M. L. Scott. Programming Language Pragmatics. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 4th edition, 2007. ISBN 978-0124104099.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Addresssanitizer: A fast address sanity checker.
In Proceedings of the 2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12, pages
28–28, Berkeley, CA, USA, 2012. USENIX Association. URL http://dl.acm.org/citation.
cfm?id=2342821.2342849.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algorithms. Cambridge
university press, 2014. ISBN 978-1107-05713-5.

J. H. Siddiqui, A. Rauf, and M. A. Ghafoor. Advances in software model checking. In A. M. Memon, editor,
Advances in Computers, volume 108, chapter 2, pages 59–89. Academic Press, 2018. ISBN 978-0-12-
815119-8.

N. Silva and M. Vieira. Software for embedded systems: A quality assessment based on improved odc taxon-
omy. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, SAC ’16, pages 1780–1783,
New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3739-7. doi: 10.1145/2851613.2851908. URL
http://doi.acm.org/10.1145/2851613.2851908.

B. Starynkevitch. Expliciter et utiliser les données et le contrôle pour les connaissances par des metacon-
naissances : systèmes EUM1 et EUM2. PhD thesis, Université Paris 6 - LIP6, december 1990. URL
http://www.theses.fr/1990PA066799. [explicitation and use of data and control for knowledge with
metaknowledge : the EUM1 and EUM2 systems].

B. Starynkevitch. Multi-stage construction of a global static analyzer. In GCC summit, pages
143–152, Ottawa, Canada, july 2007. GCC. URL http://starynkevitch.net/basile/
gccsummit2007-starynkevitch.pdf.

B. Starynkevitch. GCC MELT website (archive), 2008-2016. URL http://starynkevitch.net/
Basile/gcc-melt/. (archive of the old gcc-melt.org site).

B. Starynkevitch. A middle end lisp translator for GCC. In GCC Research Opportunities workshop, 2009. URL
http://www.doc.ic.ac.uk/~phjk/GROW09/papers/01-MELT-Starynkevitch.pdf.

B. Starynkevitch. MELT - a translated domain specific language embedded in the GCC compiler. In
DSL2011 IFIP conf., Bordeaux (France), Sept. 2011. URL http://adsabs.harvard.edu/abs/
2011arXiv1109.0779S.

G. L. Steele, Jr. Common LISP: The Language. Digital Press, Newton, MA, USA, 2nd edition, 1990. ISBN
1-55558-041-6.

B. Stroustrup. Programming: Principles and Practice Using C++. Addison-Wesley Professional, 2nd edition,
2014. ISBN 0321992784, 9780321992789.

B. Stroustrup. Thriving in a crowded and changing world: C++ 2006–2020. Proceedings of the ACM on Pro-
gramming Languages, 4(HOPL):1–168, 2020. URL https://dl.acm.org/doi/pdf/10.1145/
3386320.

A. S. Tanenbaum. Modern operating systems. Prentice Hall, Englewood Cliffs, N.J., 1992.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 75 of 77

http://doi.acm.org/10.1145/1721695.1721702
http://doi.acm.org/10.1145/1721695.1721702
http://dl.acm.org/citation.cfm?id=2342821.2342849
http://dl.acm.org/citation.cfm?id=2342821.2342849
http://doi.acm.org/10.1145/2851613.2851908
http://www.theses.fr/1990PA066799
http://starynkevitch.net/basile/gccsummit2007-starynkevitch.pdf
http://starynkevitch.net/basile/gccsummit2007-starynkevitch.pdf
http://starynkevitch.net/Basile/gcc-melt/
http://starynkevitch.net/Basile/gcc-melt/
http://www.doc.ic.ac.uk/~phjk/GROW09/papers/01-MELT-Starynkevitch.pdf
http://adsabs.harvard.edu/abs/2011arXiv1109.0779S
http://adsabs.harvard.edu/abs/2011arXiv1109.0779S
https://dl.acm.org/doi/pdf/10.1145/3386320
https://dl.acm.org/doi/pdf/10.1145/3386320


the BISMON static source code analyzer

D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the CONDOR experience. Con-
currency and computation: practice and experience, 17(2-4):323–356, 2005.

The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 3.2.0 edition, 2020. URL
https://gudhi.inria.fr/doc/3.2.0/.

J. Tirole. Économie du bien commun. Presses Universitaires de France, 2018. ISBN 978-2-13-080766-7. in
French: economics of common goods.

D. Ungar and R. B. Smith. SELF: The power of simplicity. SIGPLAN Not., 22(12):227–242, Dec. 1987. ISSN
0362-1340. doi: 10.1145/38807.38828. URL http://doi.acm.org/10.1145/38807.38828.

R. Van De Riet. Linguistic instruments in knowledge engineering. In Proc.1991 Workshop on Linguistic
Instruments in Knowledge Engineering. North Holland, 1992. ISBN 978 0444883940.

R. Vedala and S. A. Kumar. Automatic detection of printf format string vulnerabilities in software applications
using static analysis. In Proceedings of the CUBE International Information Technology Conference, CUBE
’12, pages 379–384, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1185-4. doi: 10.1145/2381716.
2381787. URL http://doi.acm.org/10.1145/2381716.2381787.

P. Voigt and A. Von dem Bussche. The EU GENERAL DATA PROTECTION REGULATION. A Practical Guide,
1st Ed., Cham: Springer International Publishing, 2017.

S. Wagner. Defect classification and defect types revisited. In Proceedings of the 2008 Workshop on Defects
in Large Software Systems, DEFECTS ’08, pages 39–40, New York, NY, USA, 2008. ACM. ISBN 978-
1-60558-051-7. doi: 10.1145/1390817.1390829. URL http://doi.acm.org/10.1145/1390817.
1390829.

A. S. Waterman. Design of the RISC-V instruction set architecture. PhD thesis, UC Berkeley, 2016.

S. Weber. The Success of Open Source. Harvard University Press, Cambridge, MA, USA, 2004. ISBN
0674012925.

X. Wu, X. Zhu, G.-Q. Wu, and W. Ding. Data mining with big data. IEEE transactions on knowledge and data
engineering, 26(1):97–107, 2013.

Y. Zhang and Y. Huang. "learned" operating systems. ACM SIGOPS Operating Systems Review, 53(1):40–45,
2019.

S. Zuboff. Big other: surveillance capitalism and the prospects of an information civilization. Journal of In-
formation Technology, 30(1):75–89, 2015. URL https://cryptome.org/2015/07/big-other.
pdf.

For books in French, I have provided a tentative translation into English of their title in brackets.

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 76 of 77

https://gudhi.inria.fr/doc/3.2.0/
http://doi.acm.org/10.1145/38807.38828
http://doi.acm.org/10.1145/2381716.2381787
http://doi.acm.org/10.1145/1390817.1390829
http://doi.acm.org/10.1145/1390817.1390829
https://cryptome.org/2015/07/big-other.pdf
https://cryptome.org/2015/07/big-other.pdf


the BISMON static source code analyzer

About this document'

&

$

%

To produce this document, both in PDF and HTML forms : build bismona on your
Linux computer, then run make docb or just make latexdoc to get only its PDF
form.

Feedback and improvements on this document can be suggested by email (to
basile@starynkevitch.net or basile.starynkevitch@cea.fr) or by
submitting patches to Bismon thru its https://github.com/bstarynk/bismon reposi-
tory (or directly by email, with your permission to include it). Notice that this document
may contain generated documentation, and will contain more and more generated parts
in the future.

aSee the README.md file on https://github.com/bstarynk/bismon/ for building instructions.
bThat uses LATEX and HeVeA. HTML generation might not work in summer 2019.

Acknowledgements

Thanks to my colleague Franck Védrine, to several members of the CHARIOT consortium who have proofread
this report, and to Niklas Rosencratz (from Sweden, outside of the consortium) who voluntarily found mistakes
in it and proposed, in the repository on https://github.com/montao/bismon-docker/, a Dockerfile for
bismon.

Thanks also to Jérémie Salvucci (France) and Abhishek Chakravarti (India) for many valuable questions,
suggestions, and discussions -in numerous audioconference (or face to face) exchanges, or in private emails-,
about reflexive persistent systems in general, and more specifically about Bismon. Both did suggest several
improvements to this report and to the Bismon software.

The CC-BY-SA license below for this (CHARIOT D1.3v2) deliverable is required to enable major parts of
this report to be later incorporated into a proper bismon free software documentation. For example, the Debian
Linux distribution has a policy 211 strongly recommending a specific set of licenses (notably CC-BY-SA) for
documentation. Using other (deemed proprietary) licenses in free software documentation is decreasing the
future chances of such documentation being later incorporated in Linux distributions.

This entire document is licensed under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

(git commit 61e424abbb482e7e++; generated on Mon 01 Feb 2021 03:26:24 PM MET)

Some variant of this draft report is downloadable from http://starynkevitch.net/Basile/bismon-doc.pdf and elsewhere.

211See Debian documentation project on https://www.debian.org/doc/ddp etc...

DRAFT 61e424abbb482e7e++ on 2021-Feb-01 Page 77 of 77

mailto:basile@starynkevitch.net
mailto:basile.starynkevitch@cea.fr
https://github.com/bstarynk/bismon
https://github.com/bstarynk/bismon/blob/master/README.md
https://github.com/bstarynk/bismon/
http://hevea.inria.fr/
https://github.com/montao/bismon-docker/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://starynkevitch.net/Basile/bismon-doc.pdf
https://www.debian.org/doc/ddp

	Introduction
	Mapping Chariot output
	Deliverable Overview and Report Structure
	Expected audience
	The Chariot vision on specialized static source code analysis for more secure and safer IoT software development
	About static source code analysis and IoT
	The power of an existing compiler: GCC
	Leveraging simple static source analysis on GCC

	Lessons learned from GCC MELT
	Driving principles for the Bismon persistent monitor
	About Bismon
	About Bismon as a domain-specific language
	About Bismon as a evolving software system
	About Bismon as a static source code analyzer framework

	Multi-threaded and distributed aspects of Bismon

	Data and its persistence in Bismon
	Data processed in Bismon
	Immutable values
	Mutable objects

	garbage collection of values and objects
	persistence in Bismon
	file organization of the persistent state
	persisting objects


	Static analysis of source code in Bismon
	static analysis of GCC code
	static analysis of IoT firmware or application code
	static analysis related to pointers and addresses

	Using Bismon
	How JSON is used by Bismon
	The canonical JSON encoding of Bismon values
	The nodal JSON decoding into Bismon values
	JSON extraction with extract_json

	Web interface internal design
	Using bismon for Chariot

	Miscellanous work
	Contributions to other free software projects
	Aborted contribution to libonion
	Contribution to GCC

	Design and implementation of the compiler and linker extension

	Conclusion
	Building bismon from its source code
	Prerequisites for building bismon
	File naming conventions in bismon
	Naming conventions and source files organization for bismon
	Generators and meta-programs in bismon

	Configuring bismon from its source code
	Building bismon from its source code
	Checking the version of bismon

	Dumping and restoring the bismon persistent heap
	Index
	References

